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Abstract
We release the EARS (Expressive Anechoic Recordings of

Speech) dataset, a high-quality speech dataset comprising 107
speakers from diverse backgrounds, totaling in 100 hours of
clean, anechoic speech data. The dataset covers a large range of
different speaking styles, including emotional speech, different
reading styles, non-verbal sounds, and conversational freeform
speech. We benchmark various methods for speech enhance-
ment and dereverberation on the dataset and evaluate their per-
formance through a set of instrumental metrics. In addition, we
conduct a listening test with 20 participants for the speech en-
hancement task, where a generative method is preferred. We
introduce a blind test set that allows for automatic online eval-
uation of uploaded data. Dataset download links and automatic
evaluation server can be found online1.
Index Terms: speech dataset, speech enhancement, dereverber-
ation, benchmark

1. Introduction
Learning-based speech processing has seen huge leaps forward
in recent years, with the impact of deep learning spanning es-
sentially all areas from speech representation learning [1] over
text-to-speech [2] to speech enhancement [3]. Publicly avail-
able datasets such as LibriSpeech [4] or VCTK [5] have un-
doubtedly been a key driver of open and reproducible research
in our field and have enabled steady progress. However, these
datasets typically come with multiple shortcomings and are ei-
ther too small, of low recording quality or do not span a large
enough variety of different speakers and speaking styles.

To overcome these shortcomings, we release the Expressive
Anechoic Recordings of Speech (EARS) dataset. EARS con-
tains 100 h of anechoic speech recordings at 48 kHz from over
100 English speakers with high demographic diversity. The
dataset spans the full range of human speech, including read-
ing tasks in seven different reading styles, emotional reading
and freeform speech in 22 different emotions, conversational
speech, and non-verbal sounds like laughter or coughing.

In addition, we set up a speech enhancement and speech
dereverberation benchmark on EARS, comparing several pre-
dictive [6, 7] and generative [8, 9] speech enhancement meth-
ods. The benchmarks are intended to provide valuable insights
into models’ strengths, limitations, and comparability, thus pro-
moting the development of robust and efficient speech enhance-
ment systems.

1https://sp-uhh.github.io/ears_dataset/
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Figure 1: High Dynamic Range. The EARS dataset spans the
complete dynamic range of human speech, from whispering to
yelling and screaming.

2. EARS dataset
A good speech dataset is characterized by its scale, diversity,
and high recording quality. However, most existing datasets fall
short in one or more of these characteristics; see Table 1. Most
notably, a dataset that is of high recording quality (clean 48 kHz
audio), has a sufficient scale and covers the full range of hu-
man speech as opposed to only reading or neutral speech does
not exist to the best of our knowledge. Yet, such a dataset is
strongly required to advance research ranging from speech syn-
thesis over voice and style conversion to speech enhancement.

We overcome these limitations with the EARS dataset,
which provides high speaker and speech diversity paired with
the highest recording quality.

High Recording Quality. All speech is recorded in an ane-
choic chamber as 32-bit audio at 48 kHz. We simultaneously
record with a low-noise GRAS 40HH and a GRAS 48BL mi-
crophone, which are both mounted about 1 m in front of the
participant. The first microphone has low self-noise and high
sensitivity to capture subtle and nuanced speech signals, while
the second has lower sensitivity to capture high-energy speech
like yelling without clipping, allowing us to capture the full
dynamic range of human speech, see Figure 1. We use the
high-sensitivity recording for our dataset whenever possible.
In the few (5% of the dataset) cases, like yelling, where the
high-sensitivity microphone clips, we replace it with the lower-
sensitivity microphone. To maintain the same audio character-
istics between both microphones, we measure the transfer func-
tion between them using a sine-sweep and deconvolution and
equalize the low-sensitivity microphone accordingly. See the
project page for examples1.

High Speaker Diversity. We recorded 107 speakers from
diverse demographic backgrounds, each for close to one hour,
resulting in a dataset with 100 h of clean speech. Our speakers
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hours speakers sample
rate

anechoic reading
styles

freeform
speech

emotional
speech

speaker
metadata

DNS (LibriVox) [10] 556 1948 48 kHz† ✗ n/a ✗ ✗ ✗
MSP-Conversation (v1.0) [11] 14 197 16 kHz ✗ n/a ✓ ✓ ✗
MSP-Podcast (v1.10) [12] 166 1458 16 kHz ✗ n/a ✓ ✓ ✗
LibriSpeech [4] 982 2484 16 kHz ✗ n/a ✗ ✗ ✗
LJSpeech [13] 24 1 22.05 kHz ✗ neutral ✗ ✗ ✗
TIMIT [14] 5 632 16 kHz ✗ neutral ✗ ✗ ✓
VCTK [5] 44 110 48 kHz ✗ neutral ✗ ✗ ✗
WSJ0 [15] 29 119 16 kHz ✗ neutral ✗ ✗ ✗

EARS (ours) 100 107 48 kHz ✓ 7 styles ✓ 22 emotions ✓

Table 1: Speech datasets. In contrast to existing datasets, the EARS dataset is of higher recording quality, large, and more diverse.
Reading tasks feature seven styles (regular, loud, whisper, fast, slow, high pitch, and low pitch). Additionally, the dataset features
unconstrained freeform speech and speech in 22 different emotional styles. We provide transcriptions of the reading portion and meta-
data of the speakers (gender, age, race, first language). †contains files with limited bandwidth

# files rooms

ACE-Challenge [16] 84 building lobby, lecture room,
meeting room, office

AIR [17] 344 auditorium, corridor, lecture room,
meeting room, stairway

ARNI [18] 1000 variable acoustics laboratory
BRUDEX [19] 144 variable acoustics laboratory
dEchorate [20] 648 variable acoustics laboratory
DetmoldSRIR [21] 49 concert hall, music chamber, theater
Palimpsest [22] 44 air raid shelter, dockyard, submarine

Table 2: RIR datasets. To construct EARS-Reverb, we use 2313
RIR files with different room characteristics.

range from age 18 to 75 and span various ethnicities, includ-
ing African American, Caucasian, Hispanic, and Asian. Partic-
ipants are 44% male, 53% female, and 3% non-binary.

High Content Diversity. Each speaker follows a script that
covers a wide variety of speech styles. The script contains a
large portion of phonetically balanced sentence reading in seven
different styles (regular, loud, whisper, fast, slow, low pitch, and
high pitch). Additionally, it contains 18 minutes of conversa-
tional freeform speech, where participants freely reply to open-
ended questions asked by an operator or talk about vacations,
hobbies, or professions. To cover the wide range of emotional
speech, we ask participants to read three sentences and describe
an image with a specific emotional tone for each of 22 different
emotions, including base emotions like ecstasy, fear, anger, or
sadness, and nuanced emotions like serenity or adoration. To
cover the full variety of human sounds, we additionally include
short sections with non-speech sounds like laughter, yelling, or
crying, vegetative sounds like coughing or yawning, interjec-
tion words, and melodic sounds. A trained operator monitors
the participant during the recordings and ensures that speak-
ing styles and prompts are followed as requested and re-record
faulty segments.

3. Benchmarks
The EARS dataset enables various speech processing tasks to
be evaluated in a controlled and comparable way. Here, we
present benchmarks for speech enhancement and dereverbera-
tion tasks. According to the typical convention, we divide the
data into training, validation, and test splits. We select partic-
ipants p001 to p099 for training, p100 and p101 as validation
speakers, and p102 to p107 as test speakers. We use all speech
files except utterances containing interjection, melodic, nonver-

pub. date # params GMACs proc/s [s]

Conv-TasNet [6] May 2019 8.7 M 28 0.015
CDiffuSE [8] May 2022 18.1 M 18,382 42.268
Demucs [7] June 2023 83.6 M 60 0.027
SGMSE+ [9] June 2023 64.8 M 47,984 2.575

Table 3: Baseline methods. Date of publication, number of
parameters, MACs for an input of four seconds, and average
processing time per one-second input length.

bal, or vegetative sounds. We cut longer files in the validation
and training splits every 10 s to be at least 4 s long. For the test
set, we provide cutting times and exclude files that are longer
than 29 s. This results in 32,485 files (86.8 h) for training, 632
files (1.7 h) for validation, and 886 files (3.7 h) for the test. Data
generation scripts can be found online1.

3.1. EARS-WHAM

For the speech enhancement task, we construct the EARS-
WHAM dataset, which mixes speech from the EARS data-
set with real noise recordings from the WHAM! dataset [23]
(CC BY-NC 4.0 license). We mix speech and noise files at
signal-to-noise ratios (SNRs) randomly sampled in a range of
[−2.5, 17.5] dB, where we compute the SNR using loudness K-
weighted relative to full scale (LKFS) standardized in ITU-R
BS.1770 [24] to obtain a more perceptually meaningful scal-
ing and also to remove silent regions from the SNR compu-
tation [25]. We additionally create a blind test set for which
we only publish the noisy audio files but not the clean ground
truth. It contains 743 files (2 h) from six speakers (3 male, 3
female) that are not part of the EARS dataset and noise espe-
cially recorded for this test set. We set up an evaluation server
for blind evaluation on this test set, which can be found online1.

3.2. EARS-Reverb

For the task of dereverberation, we use real recorded room im-
pulse responses (RIRs) from multiple public datasets [16, 17,
18, 19, 20, 21, 22] (CC BY 4.0, MIT license). Table 2 shows
statistics on the RIR datasets used. All RIRs are fullband, and
we use a randomly selected channel for multi-channel record-
ings. We generate reverberant speech by convolving the clean
speech with the RIR. To avoid a time delay between the rever-
berant and clean speech signal caused by the direct path of the
RIR, we cut off the beginning of the RIR up to the index with
the highest amplitude. We only use RIRs with an RT60 rever-

wassing
Comment on Text
高内容多样性。每位讲话者遵循一个涵盖多种语音风格的脚本。该脚本包含大量语音平衡的句子阅读，以七种不同的风格进行（正常、大声、低语、快速、慢速、低音调和高音调）。此外，还包括18分钟的自由对话形式的讲话，参与者自由回答操作员提出的开放性问题，或谈论假期、爱好或职业。为了覆盖广泛的情感语音，我们要求参与者以特定的情感语调阅读三句话并描述一幅图像，共涉及22种不同的情感，包括狂喜、恐惧、愤怒或悲伤等基础情感，以及宁静或崇拜等细微情感。为了涵盖人类声音的全部多样性，我们还包括非语音声音的短片段，如笑声、喊叫或哭泣，植被音如咳嗽或打哈欠，感叹词和旋律声。在录音过程中，训练有素的操作员会监控参与者，确保按照要求的讲话风格和提示进行录音，并重新录制有误的片段。



POLQA SI-SDR [dB] PESQ ESTOI SIGMOS DNSMOS WER [%]
(14 kHz) (24 kHz) (7 kHz) (5 kHz) (24 kHz) (8 kHz) (8 kHz)

Noisy 1.71± 0.56 5.98± 6.10 1.24± 0.22 0.49± 0.15 1.95± 0.39 2.74± 0.29 33± 29

Conv-TasNet [6] 2.73± 0.78 16.93± 4.36 2.31± 0.59 0.70± 0.14 2.69± 0.42 3.47± 0.31 20± 20
CDiffuSE [8] 1.81± 0.50 8.35± 3.13 1.60± 0.40 0.53± 0.15 2.08± 0.31 2.87± 0.26 32± 27
Demucs [7] 2.97± 0.75 16.92± 4.35 2.37± 0.58 0.71± 0.14 2.87± 0.43 3.66± 0.30 17± 18
SGMSE+ [9] 3.40± 0.73 16.78± 4.47 2.50± 0.62 0.73± 0.13 3.41± 0.41 3.88± 0.26 16± 18

Table 4: Results on EARS-WHAM. Column groups are the method name, intrusive metrics, non-intrusive metrics, and WER. Below
each metric is the maximum frequency taken into account for the assessment. Values indicate mean and standard deviation.

POLQA SI-SDR [dB] PESQ ESTOI SIGMOS DNSMOS WER [%]

Noisy 1.81± 0.60 6.48± 6.76 1.28± 0.32 0.57± 0.18 1.97± 0.44 2.79± 0.37 28± 25

Conv-TasNet [6] 2.68± 0.75 16.56± 5.80 2.41± 0.63 0.75± 0.14 2.70± 0.38 3.43± 0.35 23± 22
CDiffuSE [8] 1.93± 0.61 8.22± 3.97 1.64± 0.46 0.59± 0.17 2.09± 0.34 2.92± 0.29 31± 25
Demucs [7] 3.03± 0.79 16.81± 5.94 2.50± 0.63 0.76± 0.14 2.82± 0.43 3.62± 0.34 19± 20
SGMSE+ [9] 3.35± 0.82 16.43± 6.12 2.59± 0.70 0.78± 0.13 3.30± 0.40 3.79± 0.30 19± 19

Table 5: Results for the blind test. Column groups are the method name, intrusive metrics, non-intrusive metrics, and WER. Values
indicate mean and standard deviation.

beration time that does not exceed 2 s. Finally, we normalize the
loudness of the reverberant speech to the loudness of the clean
speech using LKFS.

4. Baselines and Evaluation
4.1. Baselines

Table 3 shows all baseline methods with the date of publica-
tion, number of parameters, multiply–accumulate operations
(MACs) for an input of 4 s using the ptflops package1, and the
processing time per input second. We calculate the processing
time per second averaged over 20 utterances from the test set
using an NVIDIA RTX A6000 graphics processing unit (GPU).

Conv-TasNet [6] is a predictive method initially proposed
for speech separation that operates in the time domain. Identical
to the original approach, we learn 2 ms filters, which correspond
to kernels of size 120 and stride of 60 at a sampling rate of
48 kHz. We train with a batch size of 4 using one GPU.

CDiffuSE [8] is a generative speech enhancement method
based on a conditional diffusion process defined in the time
domain. We adapt the method for 48 kHz by using a 3072-
point short-time Fourier transform (STFT), resulting in 1537
frequency bins for the conditioner. We train the large model
with a batch size of 16 using two GPUs.

Demucs v4 [7] is a predictive model originally proposed for
music separation. We train with batch size 8 using one GPU.

SGMSE+ [9] is a generative speech enhancement method
based on a conditional diffusion process defined in the complex
STFT domain. We adapt the method for 48 kHz by using 1534-
point STFT with hop size 384. We use α = 0.667 and β =
0.065 for the STFT amplitude compression and σmin = 0.1,
σmax = 1, and γ = 2 for the stochastic differential equation.
We train with a batch size of 4 using four GPUs.

4.2. Metrics

We employ intrusive metrics that rate the processed signal in
relation to the clean reference signal and non-intrusive metrics,
which assess the performance only using the processed signal.

Intrusive metrics include the perceptual objective listening

1https://pypi.org/project/ptflops/

quality analysis (POLQA) [26] for predicting speech quality,
which takes values from 1 (poor) to 5 (excellent) as usual for
mean opinion scores (MOS). We report the perceptual eval-
uation of speech quality (PESQ) [27], which is the predeces-
sor of POLQA and is still widely used in the research com-
munity. The PESQ score lies between 1 (poor) and 4.5 (ex-
cellent). We further use extended short-time objective intelligi-
bility (ESTOI) [28] as an intrusive measure of speech intelligi-
bility. This metric yields values between 0 and 1, with higher
values indicating better intelligibility. Moreover, we calculate
the scale-invariant signal-to-distortion ratio (SI-SDR) [29] mea-
sured in dB, with higher values indicating better performance.

Non-intrusive metrics include the SIGMOS estimator [30],
which is a speech quality assessment model based on a multi-
dimensional listening test [31]. We report the overall qual-
ity (SIGMOS) and the reverberation assessment (MOS Reverb,
only in Table 7). In addition, we use the speech quality assess-
ment model DNSMOS [32] that is trained on human ratings ob-
tained from listening experiments based on ITU-T P.808 [33].

To evaluate the effect of speech enhancement on automatic
speech recognition (ASR), we use QuartzNet15x5Base-En from
the NeMo toolkit [34] as a downstream ASR system and report
the word error rate (WER). We obtain the reference transcrip-
tions by performing ASR on the clean speech utterances.

4.3. Evaluation

We provide an empirical evaluation of the speech enhancement
and dereverberation benchmarks. Listening examples for both
tasks can be found online1.

Speech Enhancement. In Table 4 and Table 5, we show
speech enhancement results on the EARS-WHAM test set and
the blind test set, respectively. Among the methods, the gener-
ative SGMSE+ [9] performs the best across most metrics, with
particularly high scores in POLQA and SIGMOS. Demucs [7],
as a representative of predictive methods, convinces with strong
results, too, although falling slightly behind SGMSE+.

Listening Test. We conduct a MUSHRA-like (Multiple
Stimuli with Hidden Reference and Anchor) listening test on
EARS-WHAM with 20 participants. We randomly sample 10
distinct utterances from the test set in a gender-balanced way (5
male, 5 female). We use the clean audio as the hidden refer-



(a) POLQA (b) SI-SDR [dB]

0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB

Noisy 1.2± 0.2 1.4± 0.3 1.9± 0.4 2.4± 0.4 −1.6± 2.4 3.5± 2.2 8.6± 2.6 13.5± 2.2

Conv-TasNet [6] 1.9± 0.5 2.5± 0.5 3.1± 0.5 3.5± 0.5 11.7± 2.6 15.2± 2.0 19.0± 2.0 21.8± 1.7
CDiffuSE [8] 1.3± 0.2 1.6± 0.3 2.0± 0.4 2.3± 0.5 4.5± 1.9 8.1± 1.9 10.1± 2.0 10.7± 2.1
Demucs [7] 2.1± 0.5 2.7± 0.5 3.4± 0.4 3.7± 0.3 11.9± 2.6 15.3± 2.3 18.9± 2.3 21.7± 2.1
SGMSE+ [9] 2.6± 0.6 3.3± 0.6 3.8± 0.3 4.0± 0.3 11.6± 2.7 15.1± 2.2 18.8± 2.2 21.8± 2.0

(c) ESTOI (d) WER [%]

0 dB 5 dB 10 dB 15 dB 0 dB 5 dB 10 dB 15 dB

Noisy 0.32± 0.08 0.44± 0.09 0.56± 0.10 0.65± 0.11 63± 25 39± 24 18± 17 12± 16

Conv-TasNet [6] 0.58± 0.14 0.67± 0.12 0.75± 0.11 0.79± 0.10 39± 22 21± 18 11± 12 8± 12
CDiffuSE [8] 0.37± 0.10 0.50± 0.11 0.60± 0.11 0.65± 0.11 61± 24 36± 22 18± 16 14± 18
Demucs [7] 0.60± 0.13 0.69± 0.11 0.76± 0.10 0.80± 0.10 32± 21 17± 16 9± 11 7± 11
SGMSE+ [9] 0.63± 0.13 0.72± 0.11 0.78± 0.10 0.81± 0.10 30± 21 17± 16 8± 9 6± 10

Table 6: Results per input SNR. Mean and standard deviation for (a) POLQA, (b) SI-SDR, (c) ESTOI, and (d) WER on EARS-WHAM.

POLQA SI-SDR [dB] PESQ ESTOI SIGMOS MOS Reverb WER [%]

Reverberant 1.75± 0.48 −16.17± 9.77 1.48± 0.37 0.52± 0.17 2.77± 0.43 2.99± 0.74 25± 25

SGMSE+ [9] 3.61± 0.63 5.79± 7.97 3.03± 0.67 0.85± 0.09 3.49± 0.43 4.73± 0.21 9± 12

Table 7: Results on EARS-Reverb. Column groups are the method name, intrusive metrics, non-intrusive metrics, and WER in percent.
Values indicate mean and standard deviation.
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Figure 2: Results of the listening test. Subjective scores based
on 20 participants visualized in a standard box plot.

ence and the noisy audio as the hidden anchor. As stimuli, we
use enhanced files of each noisy utterance from the four meth-
ods. We present participants with six audio files (four stimuli,
hidden reference, hidden anchor) per utterance and ask them to
“rate the overall quality considering artifacts and residual noise”
of each on a scale of 0–100. The trends support the quantitative
evaluation, demonstrating that SGMSE+ [9] is the preferred ap-
proach, closely followed by Demucs [7], see Figure 2.

Effect of Input SNR. Table 6 shows POLQA, SI-SDR, ES-
TOI, and WER scores segmented by input SNR, where 0 dB de-
notes the range [−2.5, 2.5] dB, and each subsequent 5 dB incre-
ment representing the next range. As expected, there is a trend
for better performance at higher input SNR, as well as smaller
standard deviations than on the full test set.

Effect of Speaking Style and Emotion. We compare the
performance of all baseline methods with respect to speaking
style and selected core emotions in Table 8 and 9. We observe
worse performance for whispered speech, which is expected
since such voiceless speech is particularly difficult to recover
after contamination with noise. Furthermore, it can be seen that
all considered approaches trained on EARS-WHAM generalize
well to emotional speech.

regular whisper loud slow fast

Noisy 1.74 1.85 1.75 1.68 1.72

Conv-TasNet [6] 2.82 2.49 2.79 2.75 3.17
CDiffuSE [8] 1.78 1.68 1.93 1.72 2.02
Demucs [7] 2.95 2.82 3.10 2.86 3.27
SGMSE+ [9] 3.39 2.89 3.70 3.33 3.64

Table 8: POLQA for different speaking styles. Mean values.

neutral anger desire pain relief

Noisy 1.77 1.61 1.65 1.86 1.74

Conv-TasNet [6] 2.78 2.53 2.71 2.72 2.76
CDiffuSE [8] 1.65 1.94 1.76 1.94 1.78
Demucs [7] 2.93 2.91 2.82 3.02 2.91
SGMSE+ [9] 3.18 3.45 3.15 3.40 3.28

Table 9: POLQA for different emotions. Mean values.

Dereverberation. Blind dereverberation with only a single
microphone is known to be challenging, and recent results sug-
gest that generative approaches are particularly well suited for
this task [35]. In Table 7, we show dereverberation results on
the EARS-Reverb test set, using the diffusion-based generative
model SGMSE+ [9].

5. Conclusion
We released EARS, a dataset with high speaker and speaking
style diversity spanning the full range of human speech. We
hope this dataset will serve the community as a useful source to
tackle new frontiers in speech processing. We additionally pro-
vided a speech enhancement and dereverberation benchmark on
this new large-scale dataset and compared predictive and gener-
ative baselines to set a standard for future speech enhancement
work on EARS.
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