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Abstract—In this work, we build upon our previous publication
and use diffusion-based generative models for speech enhancement.
We present a detailed overview of the diffusion process that is
based on a stochastic differential equation and delve into an exten-
sive theoretical examination of its implications. Opposed to usual
conditional generation tasks, we do not start the reverse process
from pure Gaussian noise but from a mixture of noisy speech and
Gaussian noise. This matches our forward process which moves
from clean speech to noisy speech by including a drift term. We
show that this procedure enables using only 30 diffusion steps to
generate high-quality clean speech estimates. By adapting the net-
work architecture, we are able to significantly improve the speech
enhancement performance, indicating that the network, rather
than the formalism, was the main limitation of our original ap-
proach. In an extensive cross-dataset evaluation, we show that the
improved method can compete with recent discriminative models
and achieves better generalization when evaluating on a different
corpus than used for training. We complement the results with an
instrumental evaluation using real-world noisy recordings and a
listening experiment, in which our proposed method is rated best.
Examining different sampler configurations for solving the reverse
process allows us to balance the performance and computational
speed of the proposed method. Moreover, we show that the proposed
method is also suitable for dereverberation and thus not limited to
additive background noise removal.

Index Terms—Speech enhancement, dereverberation, diffusion
models, score-based generative models, score matching.
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I. INTRODUCTION

S PEECH enhancement aims to recover clean speech signals
from audio recordings that are impacted by acoustic noise

or reverberation [1]. To this end, computational approaches
often exploit the different statistical properties of the target and
interference signals [2]. Machine learning algorithms can be
used to extract these statistical properties by learning useful
representations from large datasets. A wide class of methods
employed for speech enhancement are discriminative models
that learn to directly map noisy speech to the corresponding clean
speech target [3]. Common approaches include time-frequency
(T-F) masking [4], complex spectral mapping [5], or operating
directly in the time domain [6]. These supervised methods are
trained with a variety of clean/noisy speech pairs containing
multiple speakers, different noise types, and a large range of
signal-to-noise ratios (SNRs). However, it is nearly impossible
to cover all possible acoustic conditions in the training data
to guarantee generalization. Furthermore, some discriminative
approaches have been shown to result in unpleasant speech
distortions that outweigh the benefits of noise reduction [7].

The use of generative models for speech enhancement, on
the other hand, follows a different paradigm, namely to learn
a prior distribution over clean speech data. Thus, they aim at
learning the inherent properties of speech, such as its spectral
and temporal structure. This prior knowledge can be used to
make inferences about clean speech given noisy or reverberant
input signals that are assumed to lie outside the learned distri-
bution. Several approaches follow this idea and utilized deep
generative models for speech enhancement [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17]. Among them are methods that
employ likelihood-based models for explicit density estimation
such as the variational autoencoder (VAE) [18], or leverage
generative adversarial networks (GANs) [19] for implicit density
estimation. Bando et al. propose a statistical framework using
a VAE trained in an unsupervised fashion to learn a prior
distribution over clean speech [9]. At test time they combine
the speech model with a low-rank noise model to infer the
signal variances of speech and noise to build a Wiener filter
for denoising. However, since the VAE is trained with clean
speech only, the inference model (i.e. the encoder) that predicts
the latent variable remains sensitive to noise. This has been
shown to cause the generative speech enhancement method to
produce speech-like sounds although only noise is present [9].
To mitigate this, it has been proposed to make the inference
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model robust to noisy speech by training on labeled data in
a supervised manner [14], [15], or by disentangling the latent
variable from high-level information such as speech activity
which can be estimated by supervised classifiers [12], [13].
Nevertheless, VAE-based speech enhancement methods remain
limited due to the dimensionality reduction in the latent layer and
the combined use of a linear noise model based on non-negative
matrix factorization [9], [10], [11], [12], [13], [14], [15].

More recently, a new class of generative models called
diffusion-based generative models, has been introduced to the
task of speech enhancement [20], [21], [22], [23]. Diffusion-
based generative models, or simply diffusion models, are in-
spired by non-equilibrium thermodynamics and exist in several
variants [24], [25], [26]. All of them share the idea of gradually
turning data into noise, and training a neural network that
learns to invert this process for different noise scales. More
specifically, the inference model is a fixed Markov chain, that
slowly transforms the data into a tractable prior, such as the
standard normal distribution. The generative model is another
Markov chain that is trained to revert this process iteratively [25].
Therefore, diffusion models can be considered as deep latent
variable models and have similar properties to VAEs, with the
crucial difference that the inference model is not trained and that
the latent variables have the same dimensionality as the input.
This has the advantage of not relying on surrogate objectives to
approximate maximum likelihood training such as the evidence
lower bound and enforces no strong restrictions on the model
architecture. Recently, diffusion models have been connected
with score matching [27] by looking at the stochastic differen-
tial equation (SDE) associated with the discrete-time Markov
chain [28]. The forward process can be inverted, resulting in a
corresponding reverse SDE which depends only on the score
function of the perturbed data [29]. Using this continuous-time
SDE formalism creates the opportunity to design novel diffusion
processes that support the underlying generation task. In contrast
to discrete Markov chains, it also allows the use of general-
purpose SDE solvers to numerically integrate the reverse process
for sampling.

Concerning the application of diffusion models for speech
enhancement, there exist currently two approaches that differ
conceptually in how the diffusion process is used. One ap-
proach is based on speech regeneration, i.e. a diffusion-based
vocoder network is used to synthesize clean speech by sampling
from an unconditional prior, while a conditioner network takes
noisy speech as input and performs the core part of denoising
by providing enhanced speech representations to the vocoder
network [23], [30]. An auxiliary loss is introduced for the
conditioner network to facilitate its ability to estimate clean
speech representations [23]. The second approach, on the other
hand, does not require any auxiliary loss and is not using two
separate models for generation and denoising. Instead, it models
the corruption of clean speech by environmental background
noise or reverberation directly within the forward diffusion
process, so that reversing this process would consequently result
in generating clean speech. This has been proposed as a discrete
diffusion process for time-domain speech signals [21], and
as a continuous SDE-based diffusion process in the complex

spectrogram domain [22]. Interestingly, the original denoising
score matching objective [31], which is to estimate the white
Gaussian noise in the perturbed data, is essentially reminiscent of
the goal of speech enhancement, which is to remove interfering
noise or reverberation from speech signals. However, under
realistic conditions, the environmental noise or reverberation
may not match the assumption of stationary white Gaussian
noise. Therefore, it was proposed to include real noise recordings
in the diffusion process, either by linearly interpolating between
clean and noisy speech along the process [21], or by defining
such a transformation within the drift term of an SDE [22]. The
choice of linear interpolation in [21], however, implies that the
trained deep neural network (DNN) must explicitly estimate a
portion of environmental noise at each step in the reverse pro-
cess. This can be seen in the resulting objective function [21, Eq.
(21)] which exhibits characteristics of a discriminative learning
task. In contrast, an SDE-based formulation results in a pure
generative objective function [22, Eq. (9)] and avoids any prior
assumptions on the noise distribution.

Nonetheless, note that diffusion-based speech enhancement
methods, unlike the VAE-based method described above, are
not counted as unsupervised methods, since labeled data (i.e.
clean and noisy speech pairs) are used for training. However,
the learning objective remains generative in nature which is to
learn a prior for clean speech per se rather than a direct mapping
from noisy to clean speech. In fact, supervision is only exploited
to learn the conditional generation of clean speech when noisy
speech is given. Thus, current diffusion-based models for speech
enhancement, such as [21], [22], [23], as can be considered as
conditional generative models trained in a supervised manner.

In this work, we build upon our previous publication which
defines the diffusion process in the complex short-time Fourier
transform (STFT) domain [22]. We present a comprehensive
theoretical review of the underlying score-based generative
model and include an expanded discussion on the conditional
generation process which is based on the continuous-time
SDE formalism. By using a network architecture developed
in the image processing community [28], in the work at hand
we significantly improve performance in comparison to our
previous model [22]. This indicates that the network, rather
than the formalism, was the main limitation of our original
approach. In an extensive cross-dataset evaluation, we show that
the improved method can compete with recent discriminative
models and achieves better generalization when evaluating on a
different corpus than used for training. To confirm the effective-
ness of the proposed method on non-simulated data, we perform
an instrumental evaluation with real-world noisy recordings
using non-intrusive metrics. We complement the results with
a listening experiment, in which our proposed method is rated
best. Interestingly, using the improved network, we show that
the proposed method is also suitable for dereverberation when an
individual model is trained on simulated reverberant data. Thus,
the method is not limited to the removal of additive background
noise and can also be applied to non-additive corruptions such
as reverberation or, as shown in [32], for bandwidth extension.
Furthermore, we investigate different sampler configurations for
solving the reverse process which reveals a trade-off between
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the performance and computational speed of the proposed
method.

We summarize our major contributions as follows. Regarding
the novelty with respect to Song et al. [28], we introduce a
drift term to the SDE to achieve the required task adaptation
for reconstruction problems and furthermore apply the diffusion
process and score matching objective to a complex data repre-
sentation. Also note that the approach in [28] is not explicitly
trained on reconstruction tasks and the application is different
from ours. Regarding the novelty with respect to our previous
publication [22], we use an improved network architecture and
increase the performance significantly. Moreover, we include an
extended theoretical discussion and investigate different sampler
configurations. Finally, we expand the evaluation by means
of a cross-dataset evaluation, an instrumental evaluation with
real-world noisy recordings, and a listening experiment.

II. METHOD: SCORE-BASED GENERATIVE MODEL FOR SPEECH

ENHANCEMENT (SGMSE)

In this section, we motivate and describe in detail the approach
of using score-based generative models for speech enhancement,
as proposed in our previous publication [22].

A. Data Representation

We represent our data in the complex-valued STFT domain, as
it has been observed that both real and imaginary parts of clean
speech spectrograms exhibit clear structure and are therefore
amenable to deep learning models [4]. Following the approach of
complex spectral mapping [5], we use our conditional generative
model to estimate the clean real and imaginary spectrograms
from the noisy ones.

The use of complex coefficients as data representation allows
the definition of the diffusion process in the complex spectral
domain, in which additive Gaussian noise corresponds to the
signal model used for the denoising task. This relates to tra-
ditional STFT-based methods, where spectral coefficients are
usually assumed to be complex Gaussian distributed and mutu-
ally independent [1], [2]. Statistical approaches often consider
an additive signal model assuming that the speech process and
the noise process are realizations of stochastic processes that
are statistically independent. Observing that the overall noise
process is a sum of several independent sources, the central
limit theorem ensures that the observed noise process tends to
be Gaussian [1].

Although it would be theoretically possible to define the diffu-
sion process in the magnitude domain, additive Gaussian noise
would not relate to the signal model anymore. This becomes
evident considering that in the magnitude domain, additive
Gaussian noise could result in negative amplitudes which are
physically not defined.

Thus, we operate on complex spectrograms that are elements
of C

K×F , where K denotes the number of time frames de-
pendent on the audio length, and F represents the number of
frequency bins. To compensate for the typically heavy-tailed

distribution of STFT speech amplitudes [33], we apply an am-
plitude transformation

c̃ = β|c|αei∠(c) (1)

to all complex STFT coefficients c, where ∠(·) represents the
angle of a complex number,α ∈ (0, 1] is a compression exponent
which brings out frequency components with lower energy (e.g.
fricative sounds of unvoiced speech) [34], and β ∈ R+ is a
simple scaling factor to normalize amplitudes roughly to within
[0,1]. Such a compression has been argued to be perceptually
more meaningful in speech enhancement [35], [36], and the
transformation ensures that the neural network operates on
consistently scaled inputs with respect to the Gaussian diffusion
noise [25].

B. Stochastic Process

The tasks at hand, speech enhancement and dereverberation,
can be considered as conditional generation tasks: Given the
corrupted noisy/reverberant speech, generate clean speech by
using a conditional generative model. Most previously published
diffusion-based generative models are adapted to such condi-
tional tasks either through explicit conditining channels added
to the DNN [37], [38], or through combining an unconditionally
trained score model with a separate model (such as a classifier)
that provides conditioning in the form of a gradient [28], [39].
With our method, we explore a third possibility, which is to
incorporate the particular task directly into the forward and
reverse processes of a diffusion-based generative model.

1) Forward Process: Following Song et al. [28], we design
a stochastic diffusion process {xt}Tt=0 that is modeled as the
solution to a linear SDE of the general form,

dxt = f(xt,y)dt+ g(t)dw , (2)

where xt is the current process state, t ∈ [0, T ] a continuous
time-step variable describing the progress of the process (not
to be confused with the time index of any signal in the time or
T-F domain), y the noisy or reverberant speech, and w denotes
a standard Wiener process. The vector-valued function f(xt,y)
is referred to as the drift coefficient, while g(t) is called the
diffusion coefficient and controls the amount of Gaussian white
noise injected at each time-step. Note that different to Song
et al. [28], our drift term is now a function of y, by which we
tailor the proposed SDE to reconstruction tasks. The process is
defined for each T-F bin independently. Thus, the variables in
bold are assumed to be vectors in C

d with d = KF containing
the coefficients of a flattened complex spectrogram.

The forward process in (2) turns a clean speech sample x0

into a corrupted sample xT by gradually adding noise from
the Wiener process, as illustrated in Fig. 1. To account for the
intended task adaptation of speech enhancement or dereverbera-
tion, we propose a drift term that ensures the mean of the process
moving from clean speech x0 to noisy/reverberant speech y.
In particular, we define the drift coefficient f and the diffusion
coefficient g as

f(xt,y) := γ(y − xt) , (3)
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Fig. 1. Diffusion process on a spectrogram: In the forward process noise is
gradually added to the clean speech spectrogram x0, while the reverse process
learns to generate clean speech in an iterative fashion starting from the corrupted
signal xT .

g(t) := σmin

(
σmax

σmin

)t
√

2 log

(
σmax

σmin

)
, (4)

where γ is a constant called stiffness controlling the transition
from x0 to y, and σmin and σmax are parameters defining the
noise schedule of the Wiener process. Note that we choose the
diffusion coefficient identical to that of the so-called Variance
Exploding SDE from Song et al. [28]. Our novel contribution lies
in the modified drift term, by which the intended task adaptation
is achieved.

2) Reverse Process: Following Anderson [29] and Song
et al. [28], the SDE in (2) has an associated reverse SDE,

dxt =
[−f(xt,y) + g(t)2∇xt

log pt(xt|y)
]
dt+ g(t)dw̄ ,

(5)
where the score∇xt

log pt(xt|y) is the term to be approximated
by a DNN which is therefore called a score model. We denote
the score model as sθ(xt,y, t), which is parameterized by a set
of parameters θ and receives the current process state xt, the
noisy speech y, and the current time-step t as an input. Finally,
by substituting the score model into the reverse SDE in (5), we
obtain the so-called plug-in reverse SDE [40],

dxt =
[−f(xt,y) + g(t)2sθ(xt,y, t)

]
dt+ g(t)dw̄ , (6)

which can be solved by various solver procedures, to be dis-
cussed in detail in Section III.

For inference, we assume that a trained score model sθ is
given, which approximates the true score for all t ∈ [0, T ]. We
can then generate clean speech x0 conditioned on the noisy or
reverberant speech y by solving the plug-in reverse SDE in (6).
To determine the initial condition of the reverse process at t = T ,
we sample

xT ∼ NC(xT ;y, σ(T )
2I), (7)

which is a strongly corrupted version of the noisy speech y,
as illustrated in Fig. 1. The denoising process which solves the
task of speech enhancement or dereverberation is then based
on iterating through the reverse process starting at t = T and
ending at t = 0.

C. Training Objective

Next, we derive the objective function used for training the
score model sθ. Since the SDE in (2) describes a Gaussian
process, the mean and variance of the process state xt can be
derived when its initial conditions are known [41]. This allows
for direct sampling of xt at an arbitrary time step t given x0 and
y by using the so-called perturbation kernel,

p0t(xt|x0,y) = NC

(
xt;µ(x0,y, t), σ(t)

2I
)
, (8)

where NC denotes the circularly-symmetric complex normal
distribution and I denotes the identity matrix. We utilize Eqs.
(5.50, 5.53) in Särkkä & Solin [41] to determine closed-form
solutions for the mean

µ(x0,y, t) = e−γtx0 + (1− e−γt)y , (9)

and the variance

σ(t)2 =
σ2

min

(
(σmax/σmin)

2t − e−2γt
)
log(σmax/σmin)

γ + log(σmax/σmin)
.

(10)

Vincent [31] shows that fitting the score model sθ to the score
of the perturbation kernel ∇xt

log p0t(xt|x0,y) is equivalent to
implicit and explicit score matching [27] under some regularity
conditions. This technique is called denoising score matching
and essentially results in estimating

∇xt
log p0t(xt|x0,y) = ∇xt

log

[
|2πσI|− 1

2 e−
‖xt−µ‖2

2
2σ2

]
(11)

= ∇xt
log |2πσ(t)I|− 1

2 −∇xt

‖xt − µ(x0,y, t)‖22
2σ(t)2

(12)

= −xt − µ(x0,y, t)

σ(t)2
, (13)

where for simplicity we derived the score for the real and imag-
inary part of the complex normal distribution in (8), assuming
they are independently distributed and each follows a real-valued
multivariate normal distribution. Note that (13) involves division
by σ(t)2, which has very small numerical values (including 0)
around t = 0. To avoid undefined values and numerical insta-
bilities, we thus introduce a small minimum process time tε, as
done previously in the literature [28].

At each training step, the procedure can then be described
as follows: 1) sample a random t ∼ U [tε, T ], 2) sample (x0,y)
from the dataset, 3) sample z ∼ NC(z; 0, I), and 4) sample xt

from (8) by effectively computing

xt = µ(x0,y, t) + σ(t)z. (14)

After passing (xt,y, t) to the score model, the final loss is an
unweighted L2 loss between the model output and the score of
the perturbation kernel. By substituting (14) into (13), the overall
training objective becomes,

arg min
θ

Et,(x0,y),z,xt|(x0,y)

[∥∥∥∥sθ(xt,y, t) +
z

σ(t)

∥∥∥∥
2

2

]
, (15)

where the expectation is approximated by sampling all random
variables at each training step as described above. Note that
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Fig. 2. (Left) The forward and reverse process illustrated with a single scalar variable. The mean µ (thick black line) of the forward process exponentially decays
from clean speech x0 (blue) towards noisy speech y (green), and the standard deviation (shaded gray region) increases exponentially. The reverse process moves
back to x0, starting from a slightly mismatched distribution p̃T which is centered around y rather than xT . Sample paths from both processes are shown as thin
black lines. (Right) Time evolution of the SNR of the mean µ (black) with respect to the SNR of y (green) for three different values of γ.

due to the cancellation of µ(x0,y, t), the loss function does
not explicitly involve y, only as an input to the score model.
This means that the score model is not tasked with estimating
any portion of the environmental noise directly. Finally, the
minimization is achieved by optimizing the parameters θ using
stochastic gradient descent.

D. Interpretation and Limitations

Let pt be the distribution of the perturbed data xt from the
diffusion process for a given dataset. Then its time evolution can
be thought of as a continuum of distributions {pt}t∈[0,T ] which
is determined by the drift and the diffusion coefficient of the
forward SDE. For fixed x0 and y, this time evolution can be
described in close form using (8), which we illustrate in Fig. 2
for a one-dimensional case. In the reverse process, the DNN
has the task of learning this continuous family of distributions
starting from p̃T as defined in (7). Due to the exponential increase
of the diffusion coefficient in the forward process with initial
condition σ(0)2 = 0 the distribution p0 essentially corresponds
to the clean speech distribution, whereas the terminating distri-
bution pT is a strongly corrupted version of the noisy speech
distribution. The particular characteristics in each noisy speech
sample are strongly masked by the Gaussian white noise at
t = T . Therefore, by learning the reverse process, the generative
model learns a strong prior p0 on clean speech, whereas the
forward process terminates in a strongly corrupted distribution
of the noisy speech, used as a weakly informative prior for
generation. In Fig. 2, we simulate five sample paths from the
diffusion process. All sample paths of the forward process start
exactly at x0 but exhibit starkly different trajectories at large t.
The reverse process should then turn a high-variance sample xT

back into a low-variance estimate of x0.
Looking at (9), we see that the mean µ of the forward process

exponentially decays from x0 to y, which can also be seen in
Fig. 2 (thick black line). However, for finite t it does not fully
reach the corrupted speechy (dashed green line), particularly we
haveµ(x0,y, T ) �= y. Thus, the final distribution of the forward
process pT exhibits a slight mismatch to the initial distribution
of the reverse process p̃T . We can make this mismatch arbitrarily
small by either choosing a high stiffness parameter γ or by
increasing σmax to further smooth the density functions of both
distributions. However, increasing γ would bring the mean close
to y within a short time of the forward process, which may lead

to an unstable reverse process because only the last steps are
concerned with removing environmental noise. This effect can
be seen in Fig. 2 (right plot), where we plot the SNR of the
process mean µ averaged over 256 randomly selected files from
the dataset for three values of γ. Note that we calculated the SNR
in the time domain as the ratio of the power of clean speech to
the power of environmental noise after inverting the non-linear
amplitude transformation of (1). We see that while for γ = 5
the mismatch at t = T becomes virtually zero, the change in
SNR occurs mainly in the first half of the process. For γ = 0.5,
on the other hand, the mismatch is already more than 10 dB.
However, the slope in the SNR is still apparent at the end of
the process. Therefore, there is a trade-off to consider when
choosing γ which depends on the dataset to be used. Increasing
σmax would come at the cost of more reverse iterations since
the more white Gaussian noise is added, the less high-level
information about the structure of the speech is preserved to
serve as a guide in the reverse process. In the experiments, we
choose a set of parameters based on empirical hyperparameter
optimization.

III. NUMERICAL SDE SOLVERS

There exist several computational methods to find numerical
solutions for SDEs, which are based on an approximation to
discrete time steps. To this end, the interval [0, T ] is partitioned
into N equal subintervals of width Δt = T/N , which approx-
imates the continuous formulation into the discrete reverse
process {xT ,xT−Δt, . . . ,x0}. A common single-step method
for solving this discretization is the Euler-Maruyama method.
In each iteration step, the method refers to a previous state of
the process and utilizes the drift and the Brownian motion to
determine the current state.

In this work, we employ so-called predictor-corrector (PC)
samplers proposed by Song et al. [28], which combine single-
step methods for solving the reverse SDE with numerical opti-
mization approaches such as annealed Langevin Dynamics [26].
PC samplers consist of two parts, a predictor and a corrector. The
predictor can be any single-step method that aims to solve the
reverse process by iterating through the reverse SDE. After each
iteration step of the predictor, the current state of the process is
refined by the corrector. The correction is based on Markov chain
Monte Carlo sampling and can be understood as a stochastic
gradient ascent optimizer that adds at each iteration step a small
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Fig. 3. NCSN++ network architecture used as a score model sθ : The architecture is based on a multi-resolution U-Net structure containing skip connections and
an additional progressive growing path as shown in (a). Each up- and downsampling layer and the bottleneck layer consist of multiple residual blocks in series
which are illustrated in (b).

amount of noise after taking a step in the direction of the esti-
mated score. One possible intuition about the use of stochastic
correctors is that they allow the process state to escape local
minima by the use of stochasticity. However, Karras et al. [42]
have recently argued that in the reverse process, stochasticity
is only necessary to correct for numerical truncation errors of
the predictor, a need that could be effectively circumvented by
further improving the quality of the score model and predictor.

Another numerical way of approximating the reverse process
is by solving the corresponding probability flow ordinary differ-
ential equation (ODE),

dxt =
[−f(xt,y) + g(t)2sθ(xt,y, t)

]
dt , (16)

which is the associated deterministic process of the stochastic
reverse SDE in (6). It can be shown that for each diffusion
process, there exists an ODE that describes the same marginal
probability density pt(xt) [28]. Enhancing the noisy or reverber-
ant mixture is then based on solving this ODE. In Section V-E,
we also evaluate and compare this class of solvers for our task,
specifically employing the Runge-Kutta method of fourth order
with an error estimator of fifth order [43].

IV. NETWORK ARCHITECTURE

We utilize the Noise Conditional Score Network (NCSN++)
architecture [28] for the score model sθ and adapt it for the use
of complex spectrograms. For this purpose, we consider the real
and imaginary parts of the complex input as separate channels,
since the original network only works with real-valued numbers.
Estimating both the real and imaginary parts of the score allows
to generate complex spectrograms of clean speech.

The network is based on a multi-resolution U-Net structure,
which has been experimentally shown to be powerful for tasks

such as generation and segmentation [44]. In Fig. 3(a), we illus-
trate the architecture by showing the feature maps at each reso-
lution, indicating their spatial dimension and the corresponding
number of channels. The transformations between the feature
maps are represented by arrows, where the color of the arrow
specifies the type of transformation (see the legend on top). We
use Conv2D layers with a 3x3 kernel and stride 1 as input and
output layers, and 1x1 Conv2D layers to aggregate information
from the progressive growing path that we describe later. Up-
and downsampling layers are based on residual network blocks
which are taken from the BigGAN architecture [45], shown in
Fig. 3(b). A residual block consists of Conv2D layers with the
same configuration as above, group normalization [46], up- or
downsampling with finite impulse response (FIR) filters [47],
and the Swish activation function [48]. Each upsampling layer
consists of three residual blocks and each downsampling layer
of two residual blocks in series with the last block performing
the up- or downsampling. Global attention mechanisms [49] are
added at a resolution of 16× 16 and in the bottleneck layer to
better learn global dependencies within the feature maps.

To make the model time-dependent, information about the
current progression of the diffusion process is fed into the
network architecture. A common practice is to use Fourier-
embeddings [49], i.e., a learned projection that maps the
scalar time coordinate t to an M -dimensional vector temb

that is integrated into every residual block as can be seen in
Fig. 3(b).

In addition to the main feature extraction path of the multi-
resolution U-Net structure, the network incorporates a so-called
progressive growing of the input which is seen at the top of
Fig. 3(a). The idea is to provide a downsampled version of the
input to every feature map in the contracting path, which has been
successful in stabilizing high-resolution image generation [50].
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Note that the downsampling operation in the progressive grow-
ing use shared weights for each resolution. The same procedure
is also used in the expansive path where a progressive growing
of the output is informed by the feature maps at each resolution,
resulting in the final score estimate.

V. EXPERIMENTS

In this section, we describe the experimental setup for our
speech enhancement and speech dereverberation experiments
using the proposed method.

A. Datasets

For the evaluation of the speech enhancement task we use two
datasets, the WSJ0-CHiME3 dataset and the VB-DMD dataset,
which are described below. The use of two datasets allows cross-
dataset evaluation, i.e. the test is performed on the other dataset
than the one used for training. This mismatched condition reveals
information about how well the method generalizes to unseen
data with different characteristics such as distinct noise types or
different recording conditions. Moreover, to train and evaluate
our proposed method on the dereverberation task, we create the
WSJ0-REVERB dataset, which is also described below.

1) WSJ0-CHiME3: We create the WSJ0-CHiME3 dataset
using clean speech utterances from the Wall Street Journal
(WSJ0) dataset [51] and noise signals from the CHiME3
dataset [52]. The mixture signal is created by randomly selecting
a noise file and adding it to a clean utterance. Each utterance is
used only once, and the SNR is sampled uniformly between 0
and 20 dB for the training, validation, and test set.

2) VB-DMD: We use the publicly available VoiceBank-
DEMAND dataset (VB-DMD) [53] which is often used as a
benchmark for single-channel speech enhancement. The utter-
ances are artificially contaminated with eight real-recorded noise
samples from the DEMAND database [54] and two artificially
generated noise samples (babble and speech shaped) at SNRs of
0, 5, 10, and 15 dB. The test utterances are mixed with different
noise samples at SNR levels of 2.5, 7.5, 12.5, and 17.5 dB. We
split the training data into a training and validation set using
speakers “p226” and “p287” for validation.

3) WSJ0-REVERB: To create the WSJ0-REVERB dataset,
we use clean speech data from the WSJ0 dataset [51] and
convolve each utterance with a simulated room impulse response
(RIR). We use thepyroomacoustics engine [55] to simulate
the RIRs. The reverberant room is modeled by sampling uni-
formly a T60 between 0.4 and 1.0 seconds. A dry version of the
room is generated with the same geometric parameters but a fixed
absorption coefficient of 0.99, to generate the corresponding
anechoic target. The resulting average direct-to-reverberant ratio
(DRR) is around −9 dB.

B. Instrumental Evaluation Metrics

To evaluate the performance of the proposed method we use
standard metrics which we will describe in detail below. Metrics
(a)–(d) employ full reference algorithms that rate the processed
signal in relation to the clean reference signal using conventional

digital signal analysis. On the other hand, metrics (e)-(g) are
non-intrusive metrics that can be used to evaluate real recordings
when the clean reference is unavailable.

1) POLQA: The Perceptual Objective Listening Quality
Analysis (POLQA) is an ITU-T standard that includes a per-
ceptual model for predicting speech quality [56]. The POLQA
score takes values from 1 (poor) to 5 (excellent) as usual for
mean opinion scores (MOS).

2) PESQ: The Perceptual Evaluation of Speech Quality
(PESQ) is used for objective speech quality testing and is stan-
dardized in ITU-T P.862 [57]. Although it is the predecessor of
POLQA, it is still widely used in the research community. The
PESQ score lies between 1 (poor) and 4.5 (excellent) and there
exist two variants, namely wideband PESQ and narrowband
PESQ denoted as PESQnb.

3) ESTOI: The Extended Short-Time Objective Intelligibil-
ity (ESTOI) is an instrumental measure for predicting the intelli-
gibility of speech subjected to various kinds of degradation [58].
The metric is normalized and lies between 0 and 1, with higher
values indicating better intelligibility.

4) SI-SDR, SI-SIR, SI-SAR: Scale-Invariant (SI-) Signal-to-
Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), and
Signal-to-Artifact Ratio (SAR) are standard evaluation met-
rics for single-channel speech enhancement and speech sepa-
ration [59]. They are all measured in dB, with higher values
indicating better performance.

5) DNSMOS: The Deep Noise Suppression MOS (DNS-
MOS) is a reference-free metric to evaluate perceptual speech
quality [60]. The evaluation method uses a DNN that is trained
on human ratings obtained by using an online framework for
listening experiments [61] based on ITU-T P.808 [62].

6) SIG, BAK, OVRL: The non-intrusive speech quality as-
sessment model DNSMOS P.835 [63] is based on a listening
experiment according to ITU-T P.835 [64] and provides three
MOS scores: speech quality (SIG), background noise quality
(BAK), and the overall quality (OVRL) of the audio.

7) WVMOS: Wav-to-Vec MOS (WVMOS) [65] is a MOS
prediction method for speech quality evaluation using a fine-
tuned wav2vec2.0 model [66].

C. Listening Experiment

Instrumental evaluation metrics do not always correlate to
human perception because there are many aspects of percep-
tion that are very difficult to capture by computational means.
Therefore, we conduct a MUSHRA listening experiment [67]
with ten participants using the webMUSHRA framework [68].
The participants were asked to rate the overall quality of twelve
randomly sampled examples from the WSJ0-CHiME3 test set
as reconstructed by the compared algorithms. The results are
reported on a quality scale from 0 to 100.

D. Hyperparameters and Training Configuration

1) Input representation: We convert each audio input with
sampling rate 16 kHz into a complex-valued STFT representa-
tion using a window size of 510, resulting in F = 256, a hop
length of 128 (i.e. approximately 75% overlap), and a periodic
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TABLE I
RESULTS FOR DIFFERENT SAMPLER CONFIGURATIONS TESTED ON VB-DMD
WITH THE AVERAGE NUMBER OF FUNCTION EVALUATIONS (NFE) AND THE

RESPECTIVE AVERAGE REAL-TIME FACTOR (RTF)1

Hann window. To process multiple examples for batch training,
the length of each spectrogram is trimmed to K = 256 STFT
time frames, with start and end times selected randomly at each
training step. For the spectrogram transformation in (1), we have
chosen α = 0.5 and β = 0.15 empirically.

2) Stochastic process: The SDE in (2) is parameterized with
σmin = 0.05, σmax = 0.5, and γ = 1.5 based on hyperparameter
optimization with grid search.

3) Training configuration: We train the DNN on four Quadro
RTX 6000 (24 GB memory each) for 160 epochs using the
distributed data-parallel (DDP) approach in PyTorch Light-
ning [69], which takes about one day. We use the Adam op-
timizer [70] with a learning rate of 10−4 and an effective batch
size of 4× 8 = 32. We track an exponential moving average
of the DNN weights with a decay of 0.999, to be used for
sampling [71]. We log the average PESQ value of 20 randomly
chosen examples from the validation set during training and
select the best-performing model for evaluation.

E. Sampler Settings

To find optimal sampler settings for the reverse process, we
run a hyperparameter search using the VB-DMD dataset.

1) Sampler type: We investigate which choice of sampler
yields the best speech enhancement performance, comparing
the PC sampler with different numbers of corrector steps and
an ordinary ODE sampler as described in Section III. In Table
I we can see that use of one correction step in the PC sampler
seems to be advantageous, but the use of two steps does not
lead to a further increase in performance. Thus, we decide to
use the PC sampler with one corrector step for the evaluation.
However, it should be noted that the use of one correction
step doubles the number of function evaluations (NFE) of the
sampler. The function being the expensive score model, this
results in an average real-time factor (RTF) of 1.77, i.e., 1 sec
of audio requires 1.77 sec of processing.1 Comparing the PC
sampler with the ODE sampler, we find that the PC sampler
performs better in both metrics. However, with suitable settings,
the ODE sampler requires only 14 NFE on average which results
in an improved RTF of only 0.46.

2) Number of reverse steps N: The number of reverse steps
N can be used to set a balance between the computational effort
and the performance of the model. In Fig. 4(a), we show the

1Average processing time for 10 audio files on an NVIDIA GeForce RTX
2080 Ti GPU, in a machine with an Intel Core i7-7800X CPU @ 3.50 GHz.

Fig. 4. Model performance in PESQ and SI-SDR as a function of (a) the
number of reverse steps N and (b) the step size parameter r in the annealed
Langevin corrector.

speech enhancement performance as a function of N . It can be
seen that SI-SDR starts to stagnate earlier than PESQ. We opt
for a value of N = 30, at which both metrics show no further
increase in performance.

3) Step size in corrector: In Fig. 4(b), we vary the step size
r of the annealed Langevin dynamics in the corrector. Interest-
ingly, this parameter represents a compromise between PESQ
and SI-SDR. We choose r = 0.5 to achieve a maximum PESQ
value while still obtaining a good value for SI-SDR.

F. Baselines

We compare the performance of our proposed method with
four generative and four discriminative baselines which we
describe in more detail below. All methods are re-trained by us,
except for DVAE, MetricGAN+, and CDiffuSE on VB-DMD,
for which we obtained the pre-trained model from the authors
who used the exact same training data.

1) STCN [11]: A generative VAE-based speech enhance-
ment method which uses a stochastic temporal convolutional
network (STCN) [72] that allows the latent variables to have
both hierarchical and temporal dependencies. The parameters
of the noise model and the latent variables are estimated using
a Monte Carlo expectation maximization (MCEM) algorithm.

2) DVAE [17]: Generative speech enhancement method
based on an unsupervised dynamical VAE (DVAE) [73] which
models temporal dependencies between successive observable
and latent variables. Parameters are updated at test time using a
variational expectation maximization (VEM) method where the
encoder is fine-tuned using stochastic gradient ascent.

3) CDiffuSE [21]: Most related to our proposed method is
CDiffuSE, a generative speech enhancement method based on a
conditional diffusion process defined in the time domain.

4) SGMSE [22]: Score-based Generative Model for Speech
Enhancement (SGMSE) is our previous publication on which the
proposed method is based. The main difference is that it uses a
deep complex U-Net [74] instead of the NCSN++ architecture
as the score model.

5) MetricGAN+ [75]: A discriminative speech enhancement
method that uses a generator network for mask-based prediction
of clean speech and introduces a discriminator network trained
to approximate the PESQ score.

6) Conv-TasNet [76]: An end-to-end neural network that
estimates a mask that is used for filtering a learned representation

Authorized licensed use limited to: Northeastern University. Downloaded on June 25,2024 at 14:47:45 UTC from IEEE Xplore.  Restrictions apply. 

wassing
Comment on Text
最终选用σ=0.05~0.5，γ-1.5

wassing
Comment on Text
使用Quadro RTX 6000(24GB)*4训练160epoch，batch_size=32，约一天时间，验证集效果使用PESQ指标追踪

wassing
Comment on Text
比较不同校正步数的PC采样器和普通的ODE采样器使用一个校正步的PC采样器似乎是有利的，但使用两个校正步并未进一步提高性能。因此，我们决定在评估中使用一个校正步的PC采样器。然而，需要注意的是，使用一个校正步将采样器的函数评估次数（NFE）加倍。由于函数是昂贵的评分模型，这导致了平均实时因子（RTF）为1.77，即处理1秒的音频需要1.77秒。比较PC采样器和ODE采样器，我们发现PC采样器在两个指标上都表现更好。然而，在适当的设置下，ODE采样器平均只需要14次NFE，这导致了改进后的RTF仅为0.46。



RICHTER et al.: SPEECH ENHANCEMENT AND DEREVERBERATION WITH DIFFUSION-BASED GENERATIVE MODELS 2359

TABLE II
SPEECH ENHANCEMENT RESULTS OBTAINED FOR WSJ0-CHIME3 UNDER MATCHED AND MISMATCHED TRAINING CONDITIONS

of the noisy mixture. The filtered representation is transformed
back to the time domain by a learned decoder.

7) GaGNet [77]: This neural network is trained on a hybrid
complex-domain and magnitude-domain regression objective
for single-channel dereverberation. It uses so-called “glance”
and “gaze” (GaG) modules, which respectively perform a coarse
estimation of the magnitude and refine it with phase estimation
in the complex domain.

8) TCN+SA+S [78]: This single-channel dereverberation
approach uses a self-attention module to extract features from the
input magnitude. This representation is then used by a temporal
convolutional network followed by a single-layer convolutional
smoother that outputs a magnitude estimate, which is used as the
training objective. Griffin-Lim iterations are used to reconstruct
the phase.

VI. RESULTS

A. Speech Enhancement

In Table II, we report the speech enhancement results on
the WSJ0-CHiME3 test set for the matched and mismatched
condition, i.e. when the training set was also WSJ0-CHiME3
or when the training set was VB-DMD. We compare our pro-
posed method, which we call SGMSE+, with selected baseline
methods and sort the results by the type of algorithm, which
is either generative or discriminative. Considering the matched
condition in the upper half of Table II, we see that SGMSE+
outperforms all other generative methods in all metrics. Note that
STCN and RVAE are both unsupervised speech enhancement
methods, i.e. they are trained on clean speech only (WSJ0 or
VB). RVAE shows competitive results for SI-SAR, however,
its VEM optimization algorithm is very time-consuming due
to the fine-tuning of the encoder at test time, resulting in a
RTF of >10000. This is significant in contrast to STCN with
a RTF of 0.64 and SGMSE+ with a RTF of 1.771. Although
both VAE-based methods model temporal dependencies, they
are limited in their ability to produce high-quality speech, likely
due to the dimensionality reduction of the latent variable and

the encoder’s sensitivity to noisy input, which causes the latent
variable to be incorrectly initialized [15].

Comparing SGMSE+ to our previous model SGMSE, we find
a significant improvement, especially for the perceptual metrics.
We report improvements of 0.75 for POLQA and 0.68 for
PESQ. This shows that the proposed generative diffusion process
benefits significantly from the adapted network architecture. In
our previous paper [22], we have already shown improvements
over CDiffuSE for SGMSE in SI-SDR and SI-SAR, which we
now back up with also reporting an improvement in ESTOI
and DNSMOS and on par results in PESQ and POLQA. With
SGMSE+, these improvements become even more significant,
e.g. with 0.65 improvement in POLQA and 9.1 dB in SI-SDR
compared to CDiffuSE. In qualitative analysis, we found that
SGMSE+ is more accurate than CDiffuSE in preserving the
high frequencies of fricatives after the completion of the re-
verse process. To compensate for that, CDiffuSE combines the
enhanced files with the original noisy speech signal at a ratio
of 0.2 for the final prediction [21]. This results in a trade-off
between noise removal and the conservation of the signal. In our
proposed approach, on the other hand, we found no significant
suppression of high frequencies after completing the reverse
process. Therefore, it is not necessary to mix back the noisy
mixture to improve the signal quality, resulting in a significantly
higher SI-SIR.

The comparison with Conv-TasNet and MetricGAN+ shows
that SGMSE+ can keep up with the performance of discrimi-
native methods and even surpasses them in terms of POLQA,
SI-SIR, and DNSMOS. Discriminative methods are based on
regression problems that optimize certain point-wise loss func-
tions between the corrupted speech and a clean speech refer-
ence. For Conv-TasNet and MetricGAN+ these loss functions
correspond to established intrusive metrics, namely SI-SDR for
Conv-TasNet and PESQ for MetricGAN+. Note that both these
discriminative methods shine in particular on the respective
metric they used as a loss function. In contrast, generative
methods like SGMSE+ are usually not trained to achieve the
exact reconstruction of the reference clean speech but rather aim

Authorized licensed use limited to: Northeastern University. Downloaded on June 25,2024 at 14:47:45 UTC from IEEE Xplore.  Restrictions apply. 



2360 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Fig. 5. Violin plots showing POLQA results for the matched and the mis-
matched condition with dashed and dotted lines representing median and quar-
tiles, respectively.

at generating a realization of speech that is on the manifold of
clean speech. Thus, we suggest the use of non-intrusive metrics
as a complementary measure since they allow an estimation of
speech quality without relying on the exact reconstruction of a
reference signal. In fact, for the non-intrusive metric DNSMOS
our proposed method yields a significantly higher value than
the discriminative baselines, indicating the strong ability of our
generative model to generate high-quality clean speech.

Looking at the results for the mismatched condition in the
bottom half of Table II, a general trend of decreasing metrics
can be seen for all methods when compared to the corresponding
values of the matched condition. This was to be expected since
particular properties of the mismatched test set, such as distinct
noise types or different recording characteristics of the clean
speech have not been seen during training. However, generative
methods generally show less degradation in the mismatched con-
dition than discriminative methods. CDiffuSE is an exception,
as this method shows significant degradation in the mismatched
case. Informal listening reveals a problem with gain control,
which is evident in strong volume fluctuations in the enhanced
files. Furthermore, we see that SGMSE+ outperforms all other
methods in all metrics under this condition, which shows the
ability of our proposed method to generalize well.

Complementary to the average results above, we present in
Fig. 5 violin plots of the full distribution of the POLQA scores
obtained for SGMSE+, Conv-TasNet, MetricGAN+, and the
noisy mixture for reference. For each method, the distributions
are plotted side by side for the matched and mismatched con-
ditions, so that the ability to generalize can be inferred from
the horizontal alignment between both distributions. It can be
seen that both distributions for SGMSE+ are relatively similar,
whereas they are skewed for Conv-TasNet and especially for
MetricGAN+.

In Fig. 6, we report the results of the MUSHRA listen-
ing experiment in a boxplot. On average, the ten participants
rated the overall quality of our proposed approach with the
highest score. In addition, our method remains fairly robust
when the model was trained on a different training set, while
discriminative methods show much stronger degradation for the
mismatched condition. This also corresponds with the results of
the non-intrusive metric DNSMOS in Table II and thus supports
the use of non-intrusive methods for instrumental evaluation.

Fig. 6. Boxplot showing the results of the MUSHRA listening experiment
with ten participants on twelve randomly selected examples.

TABLE III
SPEECH ENHANCEMENT RESULTS OBTAINED FOR VB-DMD

Interestingly, MetricGAN+ was only rated with a median score
less than 50 for the matched condition, although the method
performed best among all baselines for PESQ (see Table II).
This reveals the discrepancy between the use of instrumental
metrics for evaluation and people’s actual perceptions. We sus-
pect that MetricGAN+ has simply learned to utilize the internal
operations of the PESQ algorithm to obtain a high value in this
metric, neglecting the naturalness of the clean speech estimate.
In fact, listening to the enhanced files, it can be recognized that
the energy of the speech signal estimated by MetricGAN+ is
mainly concentrated in the low- and mid-frequency area of the
spectrogram, while high frequencies are strongly attenuated.

Listening to the enhanced files of our method, we notice that
at very low input SNRs, some “vocalizing” artifacts with very
poor articulation and no linguistic meaning are occasionally
produced. In other examples, we find that breathing sounds or
speech-like sounds were generated in noisy regions where no
speech was originally present. These artifacts may also explain
the outliers of our method in the listening experiment (see
Fig. 6). For the matched condition, for example, the two lowest
outliers come from the same utterance with clearly noticeable
vocalizing artifacts. We hypothesize that these artifacts can
be linked to the generative nature of the proposed approach.
Indeed, for very noisy inputs, the score model may erroneously
identify noise energy in some T-F areas as corrupted speech. The
reverse diffusion process then produces speech where it did not
originally exist. We argue that this behavior could be mitigated if
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TABLE IV
SINGLE-CHANNEL DEREVERBERATION RESULTS OBTAINED FOR WSJ0-REVERB TEST SET

some conditioning with respect to speech activity and phoneme
identity would be added to the score model.

Finally, Table III lists the results for the standardized VB-
DMD dataset. This has the advantage that one can take values
from other methods and copy them from the corresponding
papers for a quick algorithmic comparison. It can be seen that
SGMSE+ outperforms all other generative baselines, further
narrowing the performance gap with discriminative methods that
currently lead the benchmark based on PESQ,2 including recent
approaches such as [79] and [80]. It should however be noted
that PESQ formally requires a minimum file length of 3.2 sec
according to P.862.3 [81], which is not the case for most files in
VB-DMD [53].

Investigating whether phase estimation has actually been im-
proved with the modeling of the complex coefficients, we use
the noisy phase in place of the estimated phase which does not
show a significant performance difference. This is also in line
with a recent study on the role of phase enhancement, where it
has been shown that the impact of phase enhancement is rather
small for∼ 32ms spectral analysis frames but increasingly large
with shorter frame lengths [84].

B. Dereverberation

We report in Table IV the performance of our approach when
trained and tested on a single-channel dereverberation task. We
compare with SGMSE [22] and three discriminative baselines,
namely Conv-TasNet [76], GaGNet [77] and TCN+SA+S [78].

Our proposed SGMSE+ approach performs particularly well
in terms of instrumental metrics compared to all other baseline
models. The low average input DRR of −9 dB constitutes a real
challenge for discriminative approaches, which do not manage to
separate the reverberation from the target without distorting the
target signal, resulting in low-quality scores. On the other hand,
our approach benefits from generative modeling and is able to
reconstruct speech with very high quality in most cases. When
comparing our previous SGMSE model [22] with SGMSE+, we
see that for speech dereverberation, the method benefits greatly
from the improved network architecture. This effect is even more
significant than for additive background noise removal in the
speech enhancement task.

In particular, using the proposed approach SGMSE+ on a
single-channel dereverberation task does not produce any of
the vocalized artifacts observed in the speech enhancement

2[Online]. Available: https://paperswithcode.com/sota/speech-
enhancement-on-demand

TABLE V
SPEECH ENHANCEMENT RESULTS OBTAINED FOR REAL-WORLD NOISY

RECORDINGS FROM THE DNS CHALLENGE 2020 TEST SET

experiments for low input SNRs. Although the reverberant signal
is formally decorrelated in the time domain from the target by
the randomness of reflections across the room, it still originates
from the dry speech source. Therefore, we conjecture that the
score model effectively detects whether the energy in a particular
time-frequency area is associated with the clean speech nearby
that needs to be reconstructed.

C. Evaluation on Real Data

Complementing the experiments using simulated data, we
evaluate the speech enhancement performance on real-world
noisy recordings. For real-world noisy recordings, there exists
no clean speech reference. Thus, we can only non-intrusive
metrics to evaluate the perceptual speech quality which we
describe in Section V-B (e)–(g). For the evaluation, we use 300
files from the test set of the Deep Noise Suppression (DNS)
Challenge 2020 [85]. In Table V, we report the results for
models that were trained on VB-DMD. It turns out that our
proposed method performs better than all other methods in all
non-intrusive metrics, demonstrating its robustness to real-world
noisy examples. Interestingly, a trend of degradation in speech
quality (SIG) can be observed for the discriminative methods,
whereas all generative models improve this metric with respect
to the mixture. For the background noise quality (BAK) metric,
on the other hand, discriminative models seem to perform well,
yet our proposed method performs superior. It is important to
note that non-intrusive metrics do not require a corresponding
clean reference signal and only assess speech quality based on
the method’s estimate. We hypothesize that our generative model
works well on these metrics, as it was trained to generate clean
speech. However, “vocalizing” artifacts as mentioned above or
phonetic confusions may not be captured with these metrics.
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We provide on our project page3 some listening examples
for all evaluated tasks. Furthermore, we include real reverberant
examples from the MC-WSJ-AV dataset [86].

VII. CONCLUSION

In this work, we built upon our existing work [22] that uses a
novel stochastic diffusion process to design a generative model
for speech enhancement in the complex STFT domain. We
presented an extended theoretical analysis of the underlying
score-based generative model and derived in detail the objective
function used for training. In further explorations, we considered
the time evolution of the conditional diffusion process which
revealed a slight mismatch between the forward and reverse
process, which can be adjusted with a careful parameterization
of the forward SDE.

By using an adopted network architecture, we were able to
significantly improve the performance compared to our previ-
ous model. In addition, we trained and evaluated the proposed
method on the task of speech dereverberation and show signif-
icantly superior performance compared to discriminative base-
line methods. Hence, we showed that with our proposed method,
a single framework can be used to train individual models for
different distortion types. For the task of speech enhancement,
we evaluated performance under matched and mismatched con-
ditions, i.e. when the training and test data were taken from the
same or different corpora. For the matched condition, the pro-
posed generative speech enhancement method performs on par
with competetive discriminative methods. For the mismatched
condition, our method shows strong generalization capabilities
and outperforms all baselines in all metrics, as confirmed by
a listening experiment. In very adverse conditions, however,
we observe that the proposed method sometimes introduces
vocalizing and breathing artifacts. We argue that these could
be mitigated in future work if some conditioning concerning
speech activity and phoneme information would be added to the
score model.

In addition, we explored different sampling strategies to solve
the reverse process at test time which allows us to balance the
performance and computational speed of the proposed method.
Future work could include other sampling techniques to further
reduce the number of diffusion steps [87] and thus the compu-
tational complexity.
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