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Bo Chen, Chao Wu, Wenbin Zhao

Huawei Technologies, Hangzhou, China

ABSTRACT

Speech separation aims to extract multiple speech sources
from mixed signals. In this paper, we propose SepDiff - a
monaural speech separation method based on the denoising
diffusion model (diffusion model). By modifying the diffu-
sion and reverse process, we show that the diffusion model
achieves an impressive performance on speech separation. To
generate speech sources, we use mel spectrogram of the mix-
ture as a condition in the training procedure and insert it in
every step of the sampling procedure. We propose a novel
DNN structure to leverage local and global speech informa-
tion through successive feature channel attention and dilated
2-D convolution blocks on multi-resolution time-frequency
features. We use a neural vocoder to get waveform from the
generated mel spectrogram. We evaluate SepDiff on LibriMix
datasets. Compared to SepFormer approach, SepDiff yields a
higher mean opinion score (MOS) of 0.11.

Index Terms— speech separation, diffusion model, gen-
erative model, deep learning

1. INTRODUCTION

Many attempts based on deep neural networks (DNN) have
been made in previous works, which brought dramatic
progress in speech separation. Early works use short-time
Fourier transform (STFT) of the mixture as the input and
calculate a mask on each source. The waveform is calculated
using the inverse STFT (iSTFT) of the estimated magnitude
[1, 2]. Since TasNet [3] was proposed in 2019, more and
more time domain architectures have been studied [4]. These
architectures usually consist of an encoder, separator, and
decoder. Encoder and decoder are applied to replace STFT
and ISTFT, providing a better transformation for mixed sig-
nal and overcoming phase reconstruction problems. The
separator between the encoder and decoder is designed in
different ways to generate masks, indicating the contribution
of each source on latent feature [5, 6]. Among these time
domain architectures, SepFormer [7] with dynamic mixing
achieves the best SI-SNRi of 22.3 dB on WSJ0-2mix dataset.
Recently, SFSRNet [8] and TF-GridNet [9] further improve
the performance of DNN approach by introducing the super-
resolution (SR) network into existing models and operating
in the complex T-F domain, respectively.

The generative method, which aims at learning the dis-
tribution of clean speech as prior knowledge, is another
approach to speech separation. Several works have utilized
generative adversarial networks (GANSs) [10, 11], flow-based
models [12] and variational autoencoders (VAEs) [13, 14] for
speech separation. Recently, diffusion models [15], which
achieve state-of-the-art performance in image generation,
have been introduced to the research of speech enhancement
[16, 17, 18]. The diffusion model consists of the diffusion
and reverse processes, as shown in Fig. 1. In the diffusion
process, Gaussian noise is added to clean speech gradually
(from right to left). In the reverse process, a DNN is learned
to sample clean speech from Gaussian noise iteratively (from
left to right).
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Fig. 1. The diffusion and reverse process of SepDiff. In every
step t, the mixture is concatenated with noisy speech sources
to guide the reverse process.

This paper introduces SepDiff, a method for speech sep-
aration based on the diffusion model. The diffusion process
is applied to mel spectrogram of clean sources, and the re-
verse process is guided by mel spectrogram of the mixture.
We start from Gaussian noise and sample certain steps until
we get clean mel spectrogram. Then we use a neural vocoder
to convert the mel spectrogram to a waveform. The contribu-
tions of this work are listed as follows:

(1) We propose SepDiff, which is the first speech separation
method based on the diffusion model.

(2) We propose a novel DNN structure in the reverse process.
This structure is based on U-Net architecture. In each block,
feature channel attention and stacked dilated 2-D convolution
are employed to leverage local and global information.

(3) The experiment result shows the effectiveness of SepDiff.
MOS achieved by SepDiff is 0.11 higher than SepFormer.
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2. SEPDIFF

2.1. Diffusion Model

The diffusion and reverse process of SepDiff is shown in Fig.
1. Two-channel Gaussian noise is used as input, and a mix-
ture guides the reverse process to get speech sources. Define
mel spectrogram of the mixture as yq, and is of dimension
(2, F, L), where F denotes the features dimension and L de-
notes the time sequence length. We get y; by adding Gaus-
sian noise on yg at time step ¢, and y7 contains maximum
noise. When T is sufficiently large, yr correspond to Gaus-
sian distribution. Diffusion process is a Markov chain, and
Y is obtained by adding a small amount of Gaussian noise to
yie—1 [15]:

=N (v VT= By, 81), (1)

where I denotes the identity matrix, and (f1,...,087) is a
variance schedule. When Gaussian noise is added for ¢ steps,
y+ can be written as:

(Yt|Yt 1

q (yilyo) =N (ye; Varyo, (1 — @) 1), )
where oy := 1 — 3; and oy := HZ:l ag, then y,; can be
directly written as:

Yt = Vaiyo + V1 — Qie, 3

where € ~ N (0,I). Reverse process P is also regarded as a
Markov chain from yr to yo:
Py (yi-1lye) ~ N(yi-15 0 (Y6,1) , 29 (¥, 1), (4)
In this paper, we modify original idea in DDPM [15] to
use diffusion model for speech separation. Define mel spec-
trogram of single-channel mixture as p,,, which has dimen-
sion (1, F, L). In the training of diffusion model, we expect
mel spectrogram of clean sources, for a given p,,,. To achieve
this, we concatenate p,, and y; along channel dimension to
get Yy (= ¥i @ pm- Yy has dimension (3;F, L). During
training, Gaussian noise is only added to first two channels.
Then y;_; is predicted from y; by learnable parameters 6. W

eset o, = 1;75%1& [15] and z ~ N (0, I):
(V1 — —Ley(Ye, 1)) + 01z (5)
Yi—-1 = \/7 \/77 ts tZ.

Since the distribution ¢ (y;—1|Y) is intractable, we train
a DNN - €y to approximate it. In training procedure, DNN
is trained with ground truth yo. In sampling procedure, we
get speech sources from Gaussian noise yr by sampling for
T steps. The training and sampling procedure of SepDiff are
described in Algorithm 1 and Algorithm 2.

Algorithm 1 Training procedure

fori=1,2,..., Njer do
Sample (yo, Pm) ~ data, With e ~ N (0, T)
t ~ Uniform (1,...,7T)
Y, = (Va YO+V1 — 0t€) D P
Take gradient descent step on
Volle —€o (Y, 1) ||
end for

Algorithm 2 Sampling procedure

Input: p,,, mel spectrogram of mixture
Sample y ~ (0, 1)
fort=1T,...,1do

Y=y ®pm

z~N(0,I),ift > 1,elsez=0

Vi1 = Je (vt — Je=eo (Yo, )) + o4z
end for
return yg

2.2. DNN Structures

In this paper, we propose a U-Net architecture based on
down/up blocks shown in Fig. 2 to approximate the distribu-
tion ¢ (y—1[Y).

Motivated by Restormer [19], we introduce multi-Dconv
head transposed attention (MDTA) module in each block to
aggregate local and global speech information. We adapt the
U-Net in several ways for our task: (1) We use the sinusoidal
position embedding followed by two linear and self-gated
activation layers (LS) to get time-step embedding. In each
block, time-step embedding passes through another LS layer
and is added to each channel of the block to provide infor-
mation of time-step t for the model. (2) We insert stacked
2-D dilated convolutional blocks (2-D DilConv) into each
block to ensure a sufficiently receptive field on both time and
frequency dimensions. The dilation factors increase expo-
nentially and are different on two dimensions. 2-D DilConv
module helps the DNN to take advantage of the long-term
correlations of the speech signal. (3) We add a pre-processing
stage with the same structure shown in Fig. 2 at the begin-
ning of the U-Net to increase the capacity of the DNN at high
time-frequency resolution.

2.3. Neural Vocoder

In this paper, we use BigVGAN [20] as a neural vocoder to
generate waveform from mel spectrogram. BigVGAN in-
troduces periodic nonlinearities and anti-aliased representa-
tion into the generator to improve audio quality. In practical
applications, speech separation methods are often employed
to separate signals mixed by unseen speakers. BigVGAN
achieves state-of-the-art performance under various unseen
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Fig. 2. Architecture of each block in proposed DNN.

conditions, including new speakers. We follow the config-
uration of BigVGAN-base with 14M parameters. The num-
ber of mel filters and STFT parameters are modified to match
SepDiff.

3. EXPERIMENTAL SETUP

3.1. Data

LibriMix [21] dataset is an open source dataset for speech
separation and has been shown to achieve better generaliza-
tion under various conditions. LibriMix dataset takes speech
utterances from two or three speakers of LibriSpeech and
mixes them together. In this paper, we evaluate SepDiff on
Libri2Mix, which consists of 270 hours of training data, 11
hours of validation data, and 11 hours of evaluation data. The
mixed data comes from around 470 hours of speech from
1252 speakers.

3.2. Model Details

We extract mel spectrogram from raw waveform as speech
representation. Hann window is applied as the analysis win-
dow; the window size is 50 ms; the hop size is 12.5 ms. Firstly
a 2048-point discrete Fourier transform is applied to extract
the spectrum. Then a mel filter bank is used to obtain an 80-
dimensional mel spectrogram, and finally, mel spectrogram

is coverted to logarithmic form. In the DNN structure, de-
fine D as the depth of the U-Net. At depth-0, define X as
the number of convolutional blocks, and C' as the number of
channels. Starting from the high time-frequency resolution
input, the down block halves the feature size, while doubling
the number of channels hierarchically.

3.3. Training and Sampling Procedure

During training, we set maximum time step 7" to 1000 and
variance schedule 3 from to 1e~* to 0.02. During sampling,
to balance the computational effort and the performance of
SepDiff, we evaluate the performance with different reverse
steps T’y fer, which will be analyzed in Section 4.3. We train
the model for 1M steps with L1 loss, Adam optimizer with a
learning rate of le-4, and a batch size of 4.

3.4. Metrics

We used MOS as the subjective evaluation metric, which
varies from 1 (bad quality, serious interference) to 5 (excel-
lent quality, no interference). We invited 15 qualified listeners
to score separated sources in a quiet environment and average
these values to get the final result.

We use perceptual objective listening quality analysis
(POLQA) [22] and prediction for generative neural speech
codecs (WARP-Q) [23] as the objective evaluation metric.
POLQA is an ITU-T standard with a perceptual model for
predicting speech quality. WARP-Q is proposed to evaluate
generative neural vocoder based codecs. WARP-Q is more
robust to slight misalignment between generative and target
signals in the time-domain than traditional objective metrics.
We set the maximum frequency to 8kHz and the number
of mel frequency cepstrum coefficients (MFCCS) to 12 for
WARP-Q calculation.

4. RESULTS AND DISCUSSIONS

4.1. Result on Libri2Mix

Table 1. MOS, POLAQ and WARP-Q results achieved by
different method on Libri2Mix. GT as the reference signal
for POLQA and WARP-Q calculation. Best values in each
column are bold.

Method MOS 1 POLQAT  WARP-QJ
GT 4.39 - -

GT-Mel 4.21 3.90 0.40
ConvTasnet 3.51 2.78 0.89
DPRNN 3.70 3.05 0.84
SepFormer 3.79 3.21 0.83
SepDiff(proposed) 3.90 3.12 0.82
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In Table 1, we report the performance of our proposed
method SepDiff with Ground Truth (GT), GT-mel, ConvTas-
net, DPRNN, and SepFormer on Libri2Mix test set. In the
subjective test, utterances with same content but from dif-
ferent methods are shuffled, and listeners do not know the
order of these utterances. GT-Mel uses mel spectrogram of
GT as input to the neural vocoder. Thus, GT-Mel can be re-
garded as the upper limit of the SepDiff performance. We
observe that GT-Mel achieves a MOS of 4.21, which is close
to the MOS of GT. Compared with other speech separation
methods, SepDiff achieves the best MOS score of 3.90 and
WARP-Q of 0.82, indicating the effectiveness of our proposed
method. In the meanwhile, we observe that SepDiff performs
worse on POLQA than SepFormer. As mentioned in 3.4,
there is always misalignment between the waveform gener-
ated by neural vocoder and the GT waveform, even with the
same perceptual quality. This misalignment degrades the ob-
jective metrics considerably, which is common in generative
models [24].

4.2. Ablation Study

Table 2. Ablation study of SepDiff.

Model D C X POLQAT WARPQ]
4 24 7 312 0.82
4 12 7 265 0.92
. 336 7 313 0.82
SepDiff-co oy 4 305 0.84
4 24 8 311 0.82
4 36 7 314 0.82
DDPM-¢y - - — 296 0.85
Restormer - - - 3.04 0.83

In table 2, we evaluate the performance of SepDiff with
different configurations. All the models are trained and tested
on Libri2Mix datasets. From rows 1-6, we compare the re-
sults of DNN structures with different parameters. We ob-
serve that the number of channels is a crucial benefit for the
model (rows 1-3); with sufficiently large channels (C' = 36),
using a smaller depth (D = 3) does not degrade the perfor-
mance. The results in rows 1, 4, and 5 indicate that X = 7
provides enough receptive field for the model. From rows 6-8,
we compare the performance of SepDiff with different DNN
structures, SepDiff-ey achieves better objective metrics than
DDPM-¢y and Restormer.

4.3. Reverse Steps

During reverse process, because a; (solid line in Fig. 3(b))
is almost zero at start of procedure, latent y; is too noisy and
do not contribute much for final results as shown in Fig. 3(a).
We use a fast reverse method by skipping most of the reverse

steps at the start and decreasing the skipped step gradually
(asterisk line in Fig. 3b) to get iy, fer. Let Tipper < T be the
number of reverse steps. At reverse step s, we get t; by t5 =
(S/Tmfer)]C ‘T, s € (1, Tiner). This is an empirical formula,
in which we set £ = 3 to approximate the mapping from
to t. Then we use €g (+,t5) to estimate noise. We compare
WARP-Q, and POLQA results of the proposed method with
different T, e on Libri2Mix test set and generate speech
sources with the same model configuration. The final result in
Fig. 3(c) shows that WARP-Q and POLQA start to stagnate
almost at the same Tj, ., of 143, which is selected as the
optimal reverse step.
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Fig. 3. (a) Latent y; with ¢t from 7" to 0 in reverse process
(from left to right); (b) An example of @y, fer With Tjy e =
205 (c) WARP-Q and POLQA results with different T, fc,..

5. CONCLUSIONS

In this work, we proposed SepDiff, a monaural speech sepa-
ration method based on the diffusion model. We used the mel
spectrogram of the mixture to guide the reverse process by
concatenating it with multi-channel Gaussian noise. More-
over, we introduced a novel DNN structure to estimate noise
at different time steps ¢. The proposed DNN is capable of
leveraging local and global information by successive feature
channel attention and dilated 2-D convolution. Our proposed
method achieved better MOS and WARP-Q results than tra-
ditional DNN approaches.

Instead of learning a mapping from mixture to single
speech, SepDiff follows a diffusion approach to learn the
prior distribution of speech. The proposed method has been
proven to be an effective way to improve speech quality fur-
ther. In future work, we plan to apply SepDiff on universal
sources separation and directly generate waveform without
the neural vocoder.
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