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1 INTRODUCTION
Di!usion models [87, 218, 223, 228] have emerged as the new state-of-the-art family of deep
generative models. They have broken the long-time dominance of generative adversarial net-
works (GANs) [71] in the challenging task of image synthesis [54, 87, 223, 228] and have
also shown potential in a variety of domains, ranging from computer vision [2, 11, 19, 23, 88,
90, 113, 115, 134, 150, 160, 173, 198, 200, 248, 270, 271, 283, 290], natural language process-
ing [6, 93, 139, 205, 275], temporal data modeling [1, 33, 124, 191, 233, 262], multi-modal mod-
eling [7, 186, 196, 199, 288], robust machine learning [18, 28, 112, 242, 273], to interdisciplinary
applications in #elds such as computational chemistry [3, 91, 104, 130, 132, 152, 258] and medical
image reconstruction [25, 41–43, 48, 158, 177, 227, 259].

Numerous methods have been developed to improve di!usion models, either by enhancing em-
pirical performance [165, 220, 224] or by extending the model capacity from a theoretical perspec-
tive [144, 145, 222, 228, 279]. Over the past two years, the body of research on di!usion models has
grown signi#cantly, making it increasingly challenging for new researchers to stay abreast of the
recent developments in the #eld. Additionally, the sheer volume of work can obscure major trends
and hinder further research progress. This survey aims to address these problems by providing a
comprehensive overview of the state of di!usion model research, categorizing various approaches,
and highlighting key advances.

In this paper, we #rst explain the foundations of di!usion models (Section 2), providing a brief
but self-contained introduction to three predominant formulations: denoising di!usion prob-
abilistic models (DDPMs) [87, 218], score-based generative models (SGMs) [223, 224], and
stochastic di!erential equations (Score SDEs) [111, 222, 228]. Key to all these approaches is
to progressively perturb data with intensifying random noise (called the “di!usion” process), then
successively remove noise to generate new data samples. We clarify how they work under the
same principle of di!usion and explain how these three models are connected and can be reduced
to one another.

Next, we present a taxonomy of recent research that maps out the #eld of di!usion models,
categorizing it into three key areas: e"cient sampling (Section 3), improved likelihood estimation
(Section 4), and methods for handling data with special structures (Section 5), such as relational
data, data with permutation/rotational invariance, and data residing on manifolds. We further ex-
amine the models by breaking each category into more detailed sub-categories, as illustrated in
Figure 1. In addition, we discuss the connections of di!usion models to other deep generative mod-
els (Section 6), including variational autoencoders (VAEs) [122, 194], generative adversarial
networks (GANs) [71], normalizing $ows [55, 174, 195], autoregressive models [239], and energy-
based models (EBMs) [129, 226]. By combining these models with di!usion models, researchers
have the potential to achieve even stronger performance.

Following that, our survey reviews six major categories of application that di!usion models have
been applied to in the existing research (Section 7): computer vision, natural language processing,
temporal data modeling, multi-modal learning, robust learning, and interdisciplinary applications.
For each task, we provide a de#nition, describe how di!usion models can be employed to address
it and summarize relevant previous work. We conclude our paper (Sections 8 and 9) by providing
an outlook on possible future directions for this exciting new area of research.

2 FOUNDATIONS OF DIFFUSION MODELS
Di!usion models are a family of probabilistic generative models that progressively destruct data by
injecting noise, then learn to reverse this process for sample generation. We present the intuition
of di!usion models in Figure 2. Current research on di!usion models is mostly based on three
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Fig. 1. Taxonomy of di!usion models variants (in Sections 3 to 5), connections with other generative models
(in Section 6), applications of di!usion models (in Section 7), and future directions (in Section 8).

predominant formulations: denoising di!usion probabilistic models (DDPMs) [87, 165, 218],
score-based generative models (SGMs) [223, 224], and stochastic di!erential equations (Score
SDEs) [222, 228]. We give a self-contained introduction to these three formulations in this sec-
tion, while discussing their connections with each other along the way.

2.1 Denoising Di!usion Probabilistic Models (DDPMs)
A denoising di"usion probabilistic model (DDPM) [87, 218] makes use of two Markov chains: a
forward chain that perturbs data to noise, and a reverse chain that converts noise back to data.
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Fig. 2. Di!usion models smoothly perturb data by adding noise, then reverse this process to generate new
data from noise. Each denoising step in the reverse process typically requires estimating the score function
(see the illustrative figure on the right), which is a gradient pointing to the directions of data with higher
likelihood and less noise.

The former is typically hand-designed with the goal to transform any data distribution into a sim-
ple prior distribution (e.g., standard Gaussian), while the latter Markov chain reverses the former
by learning transition kernels parameterized by deep neural networks. New data points are sub-
sequently generated by #rst sampling a random vector from the prior distribution, followed by
ancestral sampling through the reverse Markov chain [47].

Formally, given a data distribution x0 ∼ q(x0), the forward Markov process generates a sequence
of random variables x1, x2 . . . xT with transition kernel q(xt | xt−1). Using the chain rule of proba-
bility and the Markov property, we can factorize the joint distribution of x1, x2 . . . xT conditioned
on x0, denoted as q(x1, . . . , xT | x0), into

q(x1, . . . , xT | x0) =
T∏

t=1
q(xt | xt−1). (1)

In DDPMs, we handcraft the transition kernel q(xt | xt−1) to incrementally transform the data
distribution q(x0) into a tractable prior distribution. One typical design for the transition kernel is
Gaussian perturbation, and the most common choice for the transition kernel is

q(xt | xt−1) = N (xt ;
√

1 − βt xt−1, βt I), (2)

where βt ∈ (0, 1) is a hyperparameter chosen ahead of model training. We use this kernel to
simplify our discussion here, although other types of kernels are also applicable in the same vein.
As observed by Sohl-Dickstein et al. (2015) [218], this Gaussian transition kernel allows us to
marginalize the joint distribution in Equation (1) to obtain the analytical form of q(xt | x0) for all
t ∈ {0, 1, · · · ,T }. Speci#cally, with αt ! 1 − βt and ᾱt !

∏t
s=0 αs , we have

q(xt | x0) = N (xt ;
√
ᾱt x0, (1 − ᾱt )I). (3)

Given x0, we can easily obtain a sample of xt by sampling a Gaussian vector ϵ ∼ N (0, I) and
applying the transformation

xt =
√
ᾱt x0 +

√
1 − ᾱtϵ . (4)

When ᾱT ≈ 0, xT is almost Gaussian in distribution, so we have q(xT ) !
∫
q(xT | x0)q(x0)dx0 ≈

N (xT ; 0, I).
Intuitively speaking, this forward process slowly injects noise to data until all structures are

lost. For generating new data samples, DDPMs start by #rst generating an unstructured noise
vector from the prior distribution (which is typically trivial to obtain), then gradually remove
noise therein by running a learnable Markov chain in the reverse time direction. Speci#cally, the
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reverse Markov chain is parameterized by a prior distribution p (xT ) = N (xT ; 0, I) and a learnable
transition kernel pθ (xt−1 | xt ). We choose the prior distribution p (xT ) = N (xT ; 0, I) because
the forward process is constructed such that q(xT ) ≈ N (xT ; 0, I). The learnable transition kernel
pθ (xt−1 | xt ) takes the form of

pθ (xt−1 | xt ) = N (xt−1; µθ (xt , t ), Σθ (xt , t )) (5)
where θ denotes model parameters, and the mean µθ (xt , t ) and variance Σθ (xt , t ) are parameter-
ized by deep neural networks. With this reverse Markov chain in hand, we can generate a data
sample x0 by #rst sampling a noise vector xT ∼ p (xT ), then iteratively sampling from the learnable
transition kernel xt−1 ∼ pθ (xt−1 | xt ) until t = 1.

Key to the success of this sampling process is training the reverse Markov chain to match the
actual time reversal of the forward Markov chain. That is, we have to adjust the parameter θ so that
the joint distribution of the reverse Markov chain pθ (x0, x1, · · · , xT ) ! p (xT )

∏T
t=1 pθ (xt−1 | xt )

closely approximates that of the forward process q(x0, x1, · · · , xT ) ! q(x0)
∏T

t=1 q(xt | xt−1)
(Equation (1)). This is achieved by minimizing the Kullback-Leibler (KL) divergence between
these two:

KL(q(x0, x1, · · · , xT ) | | pθ (x0, x1, · · · , xT )) (6)
(i )
= − Eq (x0,x1, · · · ,xT )[logpθ (x0, x1, · · · , xT )] + const (7)

(ii )
= Eq (x0,x1, · · · ,xT )

[
− logp (xT ) −

T∑

t=1
log pθ (xt−1 | xt )

q(xt | xt−1)

]
︸###############################################################︷︷###############################################################︸

!−LVLB (x0 )

+const (8)

(iii )
≥ E [− logpθ (x0)

]
+ const, (9)

where (i) is from the de#nition of KL divergence, (ii) is from the fact that q(x0, x1, · · · , xT ) and
pθ (x0, x1, · · · , xT ) are both products of distributions, and (iii) is from Jensen’s inequality. The #rst
term in Equation (8) is the variational lower bound (VLB) of the log-likelihood of the data x0,
a common objective for training probabilistic generative models. We use “const” to symbolize a
constant that does not depend on the model parameter θ and hence does not a!ect optimization.
The objective of DDPM training is to maximize the VLB (or equivalently, minimizing the negative
VLB), which is particularly easy to optimize because it is a sum of independent terms, and can thus
be estimated e"ciently by Monte Carlo sampling [163] and optimized e!ectively by stochastic
optimization [229].

Ho et al. (2020) [87] propose to reweight various terms in LVLB for better sample quality and
noticed an important equivalence between the resulting loss function and the training objective
for noise-conditional score networks (NCSNs), one type of score-based generative models, in
Song and Ermon (2019) [223]. The loss in [87] takes the form of

Et∼U"1,T #,x0∼q (x0 ),ϵ∼N (0,I)
[
λ(t ) ‖ϵ − ϵθ (xt , t )‖2

]
(10)

where λ(t ) is a positive weighting function, xt is computed from x0 and ϵ by Equation (4),U"1,T #
is a uniform distribution over the set {1, 2, · · · ,T }, and ϵθ is a deep neural network with parameter
θ that predicts the noise vector ϵ given xt and t . When t ≥ 2, the component in Equation (10) is
a denoising matching term that matches the denoising step pθ (xt−1 |xt ) with q(xt−1 |xt , x0), while
at t = 1, the corresponding component is a reconstruction term that predicts x0 from x1 [148].
This objective reduces to Equation (8) for a particular choice of the weighting function λ(t ), and
has the same form as the loss of denoising score matching over multiple noise scales for training
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105:6 L. Yang et al.

score-based generative models [223], another formulation of di!usion models to be discussed in
the next section.

2.2 Score-Based Generative Models (SGMs)
At the core of score-based generative models [223, 224] is the concept of (Stein) score (a.k.a. score
or score function) [98]. Given a probability density function p (x), its score function is de#ned
as the gradient of the log probability density ∇x logp (x). Unlike the commonly used Fisher score
∇θ logpθ (x) in statistics, the Stein score considered here is a function of the data x rather than the
model parameter θ . It is a vector #eld that points to directions along which the probability density
function has the largest growth rate.

The key idea of score-based generative models (SGMs) [223] is to perturb data with a sequence
of intensifying Gaussian noise and jointly estimate the score functions for all noisy data distri-
butions by training a deep neural network model conditioned on noise levels (called a noise-
conditional score network, NCSN, in [223]). Samples are generated by chaining the score func-
tions at decreasing noise levels with score-based sampling approaches, including Langevin Monte
Carlo [76, 108, 175, 223, 228], stochastic di!erential equations [107, 228], ordinary di!erential equa-
tions [111, 145, 222, 228, 279], and their various combinations [228]. Training and sampling are
completely decoupled in the formulation of score-based generative models, so one can use a mul-
titude of sampling techniques after the estimation of score functions.

With similar notations in Section 2.1, we let q(x0) be the data distribution, and 0 < σ1 < σ2 <
· · · < σt < · · · < σT be a sequence of noise levels. A typical example of SGMs involves perturbing
a data point x0 to xt by the Gaussian noise distribution q(xt | x0) = N (xt ; x0,σ 2

t I ). This yields a
sequence of noisy data densities q(x1),q(x2), · · · ,q(xT ), where q(xt ) !

∫
q(xt )q(x0)dx0. A noise-

conditional score network is a deep neural network sθ (x, t ) trained to estimate the score function
∇xt logq(xt ). Learning score functions from data (a.k.a. score estimate) has established techniques
such as score matching [98], denoising score matching [188, 189, 240], and sliced score match-
ing [225], so we can directly employ one of them to train our noise-conditional score networks
from perturbed data points. For example, with denoising score matching and similar notations in
Equation (10), the training objective is given by

Et∼U"1,T #,x0∼q (x0 ),xt∼q (xt |x0 )

[
λ(t )σ 2

t
&&∇xt logq(xt ) − sθ (xt , t )&&2]

(11)
(i )
=Et∼U"1,T #,x0∼q (x0 ),xt∼q (xt |x0 )

[
λ(t )σ 2

t
&&∇xt logq(xt | x0) − sθ (xt , t )&&2]

+ const (12)

(ii )
= Et∼U"1,T #,x0∼q (x0 ),xt∼q (xt |x0 )

λ(t )
&&&&&−

xt − x0
σt

− σt sθ (xt , t )
&&&&&

2 + const (13)

(iii )
= Et∼U"1,T #,x0∼q (x0 ),ϵ∼N (0,I)

[
λ(t ) ‖ϵ + σt sθ (xt , t )‖2

]
+ const, (14)

where (i) is derived by [240], (ii) is from the assumption that q(xt | x0) = N(xt ; x0,σ 2
t I), and (iii)

is from the fact that xt = x0 + σtϵ . Again, we denote by λ(t ) a positive weighting function, and
“const” a constant that does not depend on the trainable parameter θ . Comparing Equation (14)
with Equation (10), it is clear that the training objectives of DDPMs and SGMs are equivalent,
once we set ϵθ (x, t ) = −σt sθ (x, t ).

For sample generation, SGMs leverage iterative approaches to produce samples from sθ (x,T ),
sθ (x,T − 1), · · · , sθ (x, 0) in succession. Many sampling approaches exist due to the decoupling of
training and inference in SGMs, some of which are discussed in the next section. Here we introduce
the #rst sampling method for SGMs, called annealed Langevin dynamics (ALD) [223]. Let N
be the number of iterations per time step and st > 0 be the step size. We #rst initialize ALD with

ACM Computing Surveys, Vol. 56, No. 4, Article 105. Publication date: November 2023.

亠



Di!usion Models: A Comprehensive Survey of Methods and Applications 105:7

x(N )
T ∼ N (0, I), then apply Langevin Monte Carlo for t = T ,T − 1, · · · , 1 one after the other. At

each time step 0 ≤ t < T , we start with x(0)
t = x(N )

t+1 , before iterating according to the following
update rule for i = 0, 1, · · · ,N − 1:

ϵ (i ) ← N (0, I)

x(i+1)
t ← x(i )

t +
1
2st sθ (x(i )

t , t ) +
√
stϵ

(i ) .

The theory of Langevin Monte Carlo [175] guarantees that as st → 0 and N → ∞, x(N )
0 becomes

a valid sample from the data distribution q(x0).

2.3 Stochastic Di!erential Equations (Score SDEs)
DDPMs and SGMs can be further generalized to the case of in#nite time steps or noise levels,
where the perturbation and denoising processes are solutions to stochastic di!erential equations
(SDEs). We call this formulation Score SDE [228], as it leverages SDEs for noise perturbation and
sample generation, and the denoising process requires estimating score functions of noisy data
distributions.

Score SDEs perturb data to noise with a di!usion process governed by the following stochastic
di!erential equation (SDE) [228]:

dx = f (x, t )dt + д(t )dw (15)
where f (x, t ) and д(t ) are di!usion and drift functions of the SDE, and w is a standard Wiener
process (a.k.a. Brownian motion). The forward processes in DDPMs and SGMs are both discretiza-
tions of this SDE. As demonstrated in Song et al. (2020) [228], for DDPMs, the corresponding SDE
is:

dx = −1
2β (t )xdt +

√
β (t )dw (16)

where β ( t
T ) = T βt as T goes to in#nity; and for SGMs, the corresponding SDE is given by

dx =

√
d[σ (t )2]

dt dw, (17)

where σ ( t
T ) = σt as T goes to in#nity. Here we use qt (x) to denote the distribution of xt in the

forward process.
Crucially, for any di!usion process in the form of Equation (15), Anderson [4] shows that it can

be reversed by solving the following reverse-time SDE:

dx =
[
f (x, t ) − д(t )2∇x logqt (x)

]
dt + д(t )dw̄ (18)

where w̄ is a standard Wiener process when time $ows backwards, and dt denotes an in#nitesimal
negative time step. The solution trajectories of this reverse SDE share the same marginal densities
as those of the forward SDE, except that they evolve in the opposite time direction [228]. Intuitively,
solutions to the reverse-time SDE are di!usion processes that gradually convert noise to data.
Moreover, Song et al. (2020) [228] prove the existence of an ordinary di!erential equation
(ODE), namely the probability #ow ODE, whose trajectories have the same marginals as the reverse-
time SDE. The probability $ow ODE is given by:

dx =
[
f (x, t ) − 1

2д(t )2∇x logqt (x)
]

dt . (19)

Both the reverse-time SDE and the probability $ow ODE allow sampling from the same data dis-
tribution as their trajectories have the same marginals.
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105:8 L. Yang et al.

Once the score function at each time step t, ∇x logqt (x), is known, we unlock both the
reverse-time SDE (Equation (18)) and the probability $ow ODE (Equation (19)) and can sub-
sequently generate samples by solving them with various numerical techniques, such as an-
nealed Langevin dynamics [223] (cf ., Section 2.2), numerical SDE solvers [107, 228], numerical
ODE solvers [111, 145, 220, 228, 279], and predictor-corrector methods (combination of MCMC
and numerical ODE/SDE solvers) [228]. Like in SGMs, we parameterize a time-dependent score
model sθ (xt , t ) to estimate the score function by generalizing the score matching objective in
Equation (14) to continuous time, leading to the following objective:

Et∼U[0,T ],x0∼q (x0 ),xt∼q (xt |x0 )

[
λ(t ) &&sθ (xt , t ) − ∇xt logq0t (xt | x0)&&2]

, (20)

where U[0,T ] denotes the uniform distribution over [0,T ], and the remaining notations follow
Equation (14).

Subsequent research on di!usion models focuses on improving these classical approaches
(DDPMs, SGMs, and Score SDEs) from three major directions: faster and more e"cient sampling,
more accurate likelihood and density estimation, and handling data with special structures (such
as permutation invariance, manifold structures, and discrete data). We survey each direction ex-
tensively in the next three sections (Sections 3 to 5).

3 DIFFUSION MODELS WITH EFFICIENT SAMPLING
Generating samples from di!usion models typically demands iterative approaches that involve a
large number of evaluation steps. A great deal of recent work has focused on speeding up the
sampling process while also improving quality of the resulting samples. We classify these e"cient
sampling methods into two main categories: those that do not involve learning (learning-free sam-
pling) and those that require an additional learning process after the di!usion model has been
trained (learning-based sampling).

3.1 Learning-Free Sampling
Many samplers for di!usion models rely on discretizing either the reverse-time SDE present in
Equation (18) or the probability $ow ODE from Equation (19). Since the cost of sampling increases
proportionally with the number of discretized time steps, many researchers have focused on de-
veloping discretization schemes that reduce the number of time steps while also minimizing dis-
cretization errors.

3.1.1 SDE Solvers. The generation process of DDPM [87, 218] can be viewed as a particular
discretization of the reverse-time SDE. As discussed in Section 2.3, the forward process of DDPM
discretizes the SDE in Equation (16), whose corresponding reverse SDE takes the form of

dx = −1
2β (t ) (xt − ∇xt logqt (xt ))dt +

√
β (t )dw (21)

Song et al. (2020) [228] show that the reverse Markov chain de#ned by Equation (5) amounts to a
numerical SDE solver for Equation (21).

Noise-Conditional Score Networks (NCSNs) [223] and Critically-Damped Langevin Dif-
fusion (CLD) [59] both solve the reverse-time SDE with inspirations from Langevin dynamics.
In particular, NCSNs leverage annealed Langevin dynamics (ALD, cf ., Section 2.2) to iteratively
generate data while smoothly reducing noise level until the generated data distribution converges
to the original data distribution. Although the sampling trajectories of ALD are not exact solutions
to the reverse-time SDE, they have the correct marginals and hence produce correct samples un-
der the assumption that Langevin dynamics converges to its equilibrium at every noise level. The
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method of ALD is further improved by Consistent Annealed Sampling (CAS) [108], a score-
based MCMC approach with better scaling of time steps and added noise. Inspired by statistical
mechanics, CLD proposes an augmented SDE with an auxiliary velocity term resembling under-
damped Langevin di!usion. To obtain the time reversal of the extended SDE, CLD only needs to
learn the score function of the conditional distribution of velocity given data, arguably easier than
learning scores of data directly. The added velocity term is reported to improve sampling speed as
well as quality.

The reverse di!usion method proposed in [228] discretizes the reverse-time SDE in the same
way as the forward one. For any one-step discretization of the forward SDE, one may write the
general form below:

xi+1 = xi + fi (xi ) + gi zi , i = 0, 1, · · · ,N − 1 (22)

where zi ∼ N (0, I), fi and gi are determined by drift/di!usion coe"cients of the SDE and the
discretization scheme. Reverse di!usion proposes to discretize the reverse-time SDE similarly to
the forward SDE, i.e.,

xi = xi+1 − fi+1 (xi+1) + gi+1gt
i+1sθ ∗ (xi+1, ti+1) + gi+1zi i = 0, 1, · · · ,N − 1 (23)

where sθ ∗ (xi , ti ) is the trained noise-conditional score model. Song et al. (2020) [228] prove that the
reverse di!usion method is a numerical SDE solver for the reverse-time SDE in Equation (18). This
process can be applied to any types of forward SDEs, and empirical results indicate this sampler
performs slightly better than DDPM [228] for a particular type of SDEs called the VP-SDE.

Jolicoeur-Martineau et al. (2021) [107] develop an SDE solver with adaptive step sizes for faster
generation. The step size is controlled by comparing the output of a high-order SDE solver versus
the output of a low-order SDE solver. At each time step, the high- and low-order solvers gener-
ate new sample x′high and x′low from the previous sample x′pr ev respectively. The step size is then
adjusted by comparing the di!erence between the two samples. If x′high and x′low are similar, the
algorithm will return x′high and then increase the step size. The similarity between x′high and x′low
is measured by:

Eq =

&&&&&&
x′low − x′high
δ (x′, x′prev)

&&&&&&
2

(24)

where δ (x′low, x
′
prev) ! max(ϵabs , ϵr el max( | x′low, | x′prev |)), and ϵabs and ϵr el are absolute and

relative tolerances.
The predictor-corrector method proposed in [228] solves the reverse SDE by combining numer-

ical SDE solvers (“predictor”) and iterative Markov chain Monte Carlo (MCMC) approaches
(“corrector"). At each time step, the predictor-corrector method #rst employs a numerical SDE
solver to produce a coarse sample, followed by a "corrector" that corrects the sample’ marginal
distribution with score-based MCMC. The resulting samples have the same time-marginals as so-
lution trajectories of the reverse-time SDE, i.e., they are equivalent in distribution at all time steps.
Empirical results demonstrate that adding a corrector based on Langevin Monte Carlo is more e"-
cient than using an additional predictor without correctors [228]. Karras et al. (2022) [111] further
improve the Langevin dynamics corrector in [228] by proposing a Langevin-like “churn” step of
adding and removing noise, achieving new state-of-the-art sample quality on datasets like CIFAR-
10 [126] and ImageNet-64 [53].

3.1.2 ODE Solvers. A large body of works on faster di!usion samplers are based on solving
the probability $ow ODE (Equation (19)) introduced in Section 2.3. In contrast to SDE solvers, the
trajectories of ODE solvers are deterministic and thus not a!ected by stochastic $uctuations. These
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deterministic ODE solvers typically converge much faster than their stochastic counterparts at the
cost of slightly inferior sample quality.

Denoising Di!usion Implicit Models (DDIM) [220] is one of the earliest work on acceler-
ating di!usion model sampling. The original motivation was to extend the original DDPM to a
non-Markovian case with the following Markov chain

q(x1, . . . , xT | x0) =
T∏

t=1
q(xt | xt−1, x0) (25)

qσ (xt−1 | xt , x0) = N (xt−1 |µ̃t (xt , x0),σ 2
t I) (26)

µ̃t (xt , x0) !
√
α t−1x0 +

√
1 − α t−1 − σ 2

t ·
xt −

√
α t x0√

1 − α t
(27)

This formulation encapsulates DDPM and DDIM as special cases, where DDPM corresponds to
setting σ 2

t =
β̂t−1
β̂t

βt and DDIM corresponds to setting σ 2
t = 0. DDIM learns a Markov chain to

reverse this non-Markov perturbation process, which is fully deterministic when σ 2
t = 0. It is

observed in [111, 145, 201, 220] that the DDIM sampling process amounts to a special discretiza-
tion scheme of the probability $ow ODE. Inspired by an analysis of DDIM on a singleton dataset,
generalized Denoising Di!usion Implicit Models (gDDIM) [280] proposes a modi#ed param-
eterization of the score network that enables deterministic sampling for more general di!usion
processes, such as the one in Critically-Damped Langevin Di!usion (CLD) [59]. PNDM [142]
proposes a pseudo numerical method to generate sample along a speci#c manifold in RN . It uses
numerical solver with nonlinear transfer part to solve di!erential equation on manifolds and then
generates sample, which encapsulates DDIM as a special case.

Through extensive experimental investigations, Karras et al. (2022) [111] show that Heun’s 2nd
order method [5] provides an excellent trade o! between sample quality and sampling speed. The
higher-order solver leads to smaller discretization error at the cost of one additional evaluation of
the learned score function per time step. Heun’s method generates samples of comparable, if not
better quality than Euler’s method with fewer sampling steps.

Di!usion Exponential Integrator Sampler [279] and DPM-solver [145] leverage the semi-linear
structure of probability $ow ODE to develop customized ODE solvers that are more e"cient than
general-purpose Runge-Kutta methods. Speci#cally, the linear part of probability $ow ODE can
be analytically computed, while the non-linear part can be solved with techniques similar to ex-
ponential integrators in the #eld of ODE solvers. These methods contain DDIM as a #rst-order
approximation. However, they also allow for higher order integrators, which can produce high-
quality samples in just 10 to 20 iterations—far fewer than the hundreds of iterations typically
required by di!usion models without accelerated sampling.

3.2 Learning-Based Sampling
Learning-based sampling is another e"cient approach for di!usion models. By using partial steps
or training a sampler for the reverse process, this method achieves faster sampling speeds at the ex-
pense of slight degradation in sample quality. Unlike learning-free approaches that use handcrafted
steps, learning-based sampling typically involves selecting steps by optimizing certain learning
objectives.

3.2.1 Optimized Discretization. Given a pre-trained di!usion model, Watson et al. (2021) [247]
put forth a strategy for #nding the optimal discretization scheme by selecting the bestK time steps
to maximize the training objective for DDPMs. Key to this approach is the observation that the
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DDPM objective can be broken down into a sum of individual terms, making it well suited for dy-
namic programming. However, it is well known that the variational lower bound used for DDPM
training does not correlate directly with sample quality [235]. A subsequent work, called Di!eren-
tiable Di!usion Sampler Search [246], addresses this issue by directly optimizing a common metric
for sample quality called the Kernel Inception Distance (KID) [17]. This optimization is feasible
with the help of reparameterization [122, 194] and gradient rematerialization. Based on truncated
Taylor methods, Dockhorn et al. (2022) [60] derive a second-order solver for accelerating synthesis
by training an additional head on top of the #rst-order score network.

3.2.2 Truncated Di!usion. One can improve sampling speed by truncating the forward and re-
verse di!usion processes [155, 285]. The key idea is to halt the forward di!usion process early
on, after just a few steps, and to begin the reverse denoising process with a non-Gaussian distri-
bution. Samples from this distribution can be obtained e"ciently by di!using samples from pre-
trained generative models, such as variational autoencoders [122, 194] or generative adversarial
networks [71].

3.2.3 Knowledge Distillation. Approaches that use knowledge distillation [147, 201] can sig-
ni#cantly improve the sampling speed of di!usion models. Speci#cally, in Progressive Distilla-
tion [201], the authors propose distilling the full sampling process into a faster sampler that
requires only half as many steps. By parameterizing the new sampler as a deep neural network,
authors are able to train the sampler to match the input and output of the DDIM sampling pro-
cess. Repeating this procedure can further reduce sampling steps, although fewer steps can result
in reduced sample quality. To address this issue, the authors suggest new parameterizations for
di!usion models and new weighting schemes for the objective function.

4 DIFFUSION MODELS WITH IMPROVED LIKELIHOOD
As discussed in Section 2.1, the training objective for di!usion models is a (negative) variational
lower bound (VLB) on the log-likelihood. This bound, however, may not be tight in many
cases [120], leading to potentially suboptimal log-likelihoods from di!usion models. In this sec-
tion, we survey recent works on likelihood maximization for di!usion models. We focus on three
types of methods: noise schedule optimization, reverse variance learning, and exact log-likelihood
evaluation.

4.1 Noise Schedule Optimization
In the classical formulation of di!usion models, noise schedules in the forward process are hand-
crafted without trainable parameters. By optimizing the forward noise schedule jointly with other
parameters of di!usion models, one can further maximize the VLB in order to achieve higher log-
likelihood values [120, 165].

The work of iDDPM [165] demonstrates that a certain cosine noise schedule can improve log-
likelihoods. Speci#cally, the cosine noise schedule in their work takes the form of

ᾱt =
h(t )

h(0)
, h(t ) = cos

(
t/T +m

1 +m · π2

)2
(28)

where ᾱt and βt are de#ned in Equation (2) and (3), andm is a hyperparameter to control the noise
scale at t = 0. They also propose a parameterization of the reverse variance with an interpolation
between βt and 1 − ᾱt in the log domain.

In Variational Di!usion Models (VDMs) [120], authors propose to improve the likelihood
of continuous-time di!usion models by jointly training the noise schedule and other di!usion
model parameters to maximize the VLB. They parameterize the noise schedule using a monotonic
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neural networkγη (t ), and build the forward perturbation process according toσ 2
t = sigmoid(γη (t )),

q(xt | x0) = N (ᾱt x0,σ 2
t I), and ᾱt =

√
(1 − σ 2

t ). Moreover, authors prove that the VLB for data

point x can be simpli#ed to a form that only depends on the signal-to-noise ratio R(t ) ! ᾱ 2
t

σ 2
t

. In
particular, the LV LB can be decomposed to

LV LB = −Ex0 KL(q(xT |x0) | | p (xT )) + Ex0,x1 logp (x0 |x1) − LD , (29)

where the #rst and second terms can be optimized directly in analogy to training variational au-
toencoders. The third term can be further simpli#ed to the following:

LD =
1
2Ex0,ϵ∼N (0,I)

∫ Rmax

Rmin

‖x0 − x̃θ (xv ,v )‖22 dv, (30)

where Rmax = R (1),Rmin = R (T ), xv = ᾱv x0+σvϵ denotes a noisy data point obtained by di!using
x0 with the forward perturbation process until t = R−1 (v ), and x̃θ denotes the predicted noise-free
data point by the di!usion model. As a result, noise schedules do not a!ect the VLB as long as they
share the same values at Rmin and Rmax, and will only a!ect the variance of Monte Carlo estimators
for VLB.

4.2 Reverse Variance Learning
The classical formulation of di!usion models assumes that Gaussian transition kernels in the re-
verse Markov chain have #xed variance parameters. Recall that we formulated the reverse kernel
as qθ (xt−1 | xt ) = N (µθ (xt , t ), Σθ (xt , t )) in Equation (5) but often #xed the reverse variance
Σθ (xt , t ) to βt I. Many methods propose to train the reverse variances as well to further maximize
VLB and log-likelihood values.

In iDDPM [165], Nichol and Dhariwal propose to learn the reverse variances by parameterizing
them with a form of linear interpolation and training them using a hybrid objective. This results
in higher log-likelihoods and faster sampling without losing sample quality. In particular, they
parameterize the reverse variance in Equation (5) as:

Σθ (xt , t ) = exp(θ · log βt + (1 − θ ) · log β̃t ), (31)

where β̃t ! 1−ᾱt−1
1−ᾱt

· βt and θ is jointly trained to maximize VLB. This simple parameterization
avoids the instability of estimating more complicated forms of Σθ (xt , t ) and is reported to improve
likelihood values.

Analytic-DPM [10] shows a remarkable result that the optimal reverse variance can be obtained
from a pre-trained score function, with the analytic form below:

Σθ (xt , t ) = σ 2
t +

/00
1

√
β t
αt
−

√
β t−1 − σ 2

t
233
4

2

·
(
1 − β tEqt (xt )

| |∇xt logqt (xt ) | |2
d

)
(32)

As a result, given a pre-trained score model, we can estimate its #rst- and second-order moments
to obtain the optimal reverse variances. Plugging them into the VLB can lead to tighter VLBs and
higher likelihood values.

4.3 Exact Likelihood Computation
In the Score SDE [228] formulation, samples are generated by solving the following reverse SDE,
where ∇xt logpθ (xt , t ) in Equation (18) is replaced by the learned noise-conditional score model
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sθ (xt , t ):
dx = f (xt , t ) − д(t )2sθ (xt , t )dt + д(t )dw. (33)

Here we use psde
θ to denote the distribution of samples generated by solving the above SDE. One

can also generate data by plugging the score model into the probability $ow ODE in Equation (19),
which gives:

dxt

dt = f (xt , t ) −
1
2д

2 (t )sθ (xt , t )
︸###########################︷︷###########################︸

!f̃θ (xt ,t )

(34)

Similarly, we usepode
θ to denote the distribution of samples generated via solving this ODE. The the-

ory of neural ODEs [34] and continuous normalizing $ows [74] indicates thatpode
θ can be computed

accurately albeit with high computational cost. For psde
θ , several concurrent works [95, 144, 222]

demonstrate that there exists an e"ciently computable variational lower bound, and we can di-
rectly train our di!usion models to maximize psde

θ using modi#ed di!usion losses.
Speci#cally, Song et al. (2021) [222] prove that with a special weighting function (likelihood

weighting), the objective used for training score SDEs implicitly maximizes the expected value of
psde

θ on data. It is shown that

DK L (q0 ‖ psde
θ ) ≤ L (θ ;д(·)2) + DK L (qT ‖ π ), (35)

where L (θ ;д(·)2) is the Score SDE objective in Equation (20) with λ(t ) = д(t )2. Since DK L (q0 ‖
psde

θ ) = −Eq0 log(psde
θ ) + const, and DK L (qT ‖ π ) is a constant, training with L (θ ;д(·)2) amounts

to minimizing −Eq0 log(psde
θ ), the expected negative log-likelihood on data. Moreover, Song et al.

(2021) and Huang et al. (2021) [95, 222] provide the following bound for psde
θ (x):

− logpsde
θ (x) ≤ L′ (x), (36)

where L′ (x) is de#ned by

L′ (x) !
∫ T

0
E

[
1
2 | |д(t )sθ (xt , t ) | |2 + ∇ · (д(t )2sθ (xt , t ) − f (xt), t)

55555 x0 = x
]
dt

− ExT [logpsde
θ (xT ) | x0 = x] (37)

The #rst part of Equation (37) is reminiscent of implicit score matching [98] and the whole bound
can be e"ciently estimated with Monte Carlo methods.

Since the probability $ow ODE is a special case of neural ODEs or continuous normalizing $ows,
we can use well-established approaches in those #elds to compute logpode

θ accurately. Speci#cally,
we have

logpode
θ (x0) = logpT (xT ) +

∫ T

t=0
∇ · f̃θ (xt , t )dt . (38)

One can compute the one-dimensional integral above with numerical ODE solvers and the Skilling-
Hutchinson trace estimator [97, 217]. Unfortunately, this formula cannot be directly optimized to
maximizepode

θ on data, as it requires calling expensive ODE solvers for each data point x0. To reduce
the cost of directly maximizing pode

θ with the above formula, Song et al. (2021) [222] propose to
maximize the variational lower bound ofpsde

θ as a proxy for maximizingpode
θ , giving rise to a family

of di!usion models called ScoreFlows.
Lu et al. (2022) [144] further improve ScoreFlows by proposing to minimize not just the vanilla

score matching loss function, but also its higher order generalizations. They prove that logpode
θ

ACM Computing Surveys, Vol. 56, No. 4, Article 105. Publication date: November 2023.



105:14 L. Yang et al.

can be bounded with the #rst, second, and third-order score matching errors. Building upon this
theoretical result, authors further propose e"cient training algorithms for minimizing high order
score matching losses and reported improved pode

θ on data.

5 DIFFUSION MODELS FOR DATA WITH SPECIAL STRUCTURES
While di!usion models have achieved great success for data domains like images and audio, they
do not necessarily translate seamlessly to other modalities. Many important data domains have
special structures that must be taken into account for di!usion models to function e!ectively.
Di"culties may arise, for example, when models rely on score functions that are only de#ned on
continuous data domains, or when data reside on low dimensional manifolds. To cope with these
challenges, di!usion models have to be adapted in various ways.

5.1 Discrete Data
Most di!usion models are geared towards continuous data domains, because Gaussian noise per-
turbation as used in DDPMs is not a natural #t for discrete data, and the score functions required
by SGMs and Score SDEs are only de#ned on continuous data domains. To overcome this di"culty,
several works [6, 78, 93, 257] build on Sohl-Dickstein et al. (2015) [218] to generate discrete data
of high dimensions. Speci#cally, VQ-Di!usion [78] replaces Gaussian noise with a random walk
on the discrete data space, or a random masking operation. The resulting transition kernel for the
forward process takes the form of

q(xt | xt−1) = v/ (xt )Qt v(xt−1) (39)
where v(x) is a one-hot column vector, and Qt is the transition kernel of a lazy random walk.
D3PM [6] accommodates discrete data in di!usion models by constructing the forward noising
process with absorbing state kernels or discretized Gaussian kernels. Campbell et al. (2022) [24]
present the #rst continuous-time framework for discrete di!usion models. Leveraging Continuous
Time Markov Chains, they are able to derive e"cient samplers that outperform discrete counter-
parts, while providing a theoretical analysis on the error between the sample distribution and the
true data distribution.

5.2 Data with Invariant Structures
Data in many important domains have invariant structures. For example, graphs are permutation
invariant, and point clouds are both translation and rotation invariant. In di!usion models, these
invariances are often ignored, which can lead to suboptimal performance. To address this issue,
several works [51, 169] propose to endow di!usion models with the ability to account for invari-
ance in data.

Niu et al. (2020) [169] #rst tackle the problem of permutation invariant graph generation with
di!usion models. They achieve this by using a permutation equivariant graph neural network [72,
206, 254], called EDP-GNN, to parameterize the noise-conditional score model. GDSS [105] further
develops this idea by proposing a continuous-time graph di!usion process. This process models
both the joint distribution of nodes and edges through a system of stochastic di!erential equations
(SDEs), where message-passing operations are used to guarantee permutation invariance.

Similarly, Shi et al. (2021) [212] and Xu et al. (2021) [261] enable di!usion models to generate
molecular conformations that are invariant to both translation and rotation. For example, Xu et al.
(2022) [261] shows that Markov chains starting with an invariant prior and evolving with equivari-
ant Markov kernels can induce an invariant marginal distribution, which can be used to enforce
appropriate data invariance in molecular conformation generation. Formally, let T be a rotation
or translation operation. Given that p (xT ) = p (T (xT )), pθ (xt−1 | xt ) = pθ (T (xt−1) | T (xt )), Xu
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et al. (2022) [261] prove that the distribution of samples is guaranteed to be invariant to T , that is,
p0 (x) = p0 (T (x)). As a result, one can build a di!usion model that generates rotation and transla-
tion invariant molecular conformations as long as the prior and transition kernels enjoy the same
invariance.

5.3 Data with Manifold Structures
Data with manifold structures are ubiquitous in machine learning. As the manifold hypothesis [66]
posits, natural data often reside on manifolds with lower intrinsic dimensionality. In addition,
many data domains have well-known manifold structures. For instance, climate and earth data
naturally lie on the sphere because that is the shape of our planet. Many works have focused
on developing di!usion models for data on manifolds. We categorize them based on whether the
manifolds are known or learned, and introduce some representative works below.

5.3.1 Known Manifolds. Recent studies have extended the Score SDE formulation to various
known manifolds. This adaptation parallels the generalization of neural ODEs [34] and continuous
normalizing $ows [74] to Riemannian manifolds [143, 157]. To train these models, researchers have
also adapted score matching and score functions to Riemannian manifolds.

The Riemannian Score-Based Generative Model (RSGM) [51] accommodates a wide range
of manifolds, including spheres and toruses, provided they satisfy mild conditions. The RSGM
demonstrates that it is possible to extend di!usion models to compact Riemannian manifolds. The
model also provides a formula for reversing di!usion on a manifold. Taking an intrinsic view, the
RSGM approximates the sampling process on Riemannian manifolds using a Geodesic Random
Walk. It is trained with a generalized denoising score matching objective.

In contrast, the Riemannian Di!usion Model (RDM) [94] employs a variational framework
to generalize the continuous-time di!usion model to Riemannian manifolds. The RDM uses a vari-
ational lower bound (VLB) of the log-likelihood as its loss function. The authors of the RDM
model have shown that maximizing this VLB is equivalent to minimizing a Riemannian score-
matching loss. Unlike the RSGM, the RDM takes an extrinsic view, assuming that the relevant
Riemannian manifold is embedded in a higher dimensional Euclidean space.

5.3.2 Learned Manifolds. According to the manifold hypothesis [66], most natural data lies
on manifolds with signi#cantly reduced intrinsic dimensionality. Consequently, identifying these
manifolds and training di!usion models directly on them can be advantageous due to the lower
data dimensionality. Many recent works have built on this idea, starting by using an autoencoder
to condense the data into a lower dimensional manifold, followed by training di!usion models in
this latent space. In these cases, the manifold is implicitly de#ned by the autoencoder and learned
through the reconstruction loss. In order to be successful, it is crucial to design a loss function that
allows for the joint training of the autoencoder and the di!usion models.

The Latent Score-Based Generative Model (LSGM) [238] seeks to address the problem of
joint training by pairing a Score SDE di!usion model with a variational autoencoder (VAE) [122,
194]. In this con#guration, the di!usion model is responsible for learning the prior distribution.
The authors of the LSGM propose a joint training objective that merges the VAE’s evidence lower
bound with the di!usion model’s score matching objective. This results in a new lower bound for
the data log-likelihood. By situating the di!usion model within the latent space, the LSGM achieves
faster sample generation than conventional di!usion models. Additionally, the LSGM can manage
discrete data by converting it into continuous latent codes.

Rather than jointly training the autoencoder and di!usion model, the Latent Di!usion Model
(LDM) [196] addresses each component separately. First, an autoencoder is trained to produce
a low-dimensional latent space. Then, the di!usion model is trained to generate latent codes.
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Fig. 3. Illustrations of works incorporating di!usion models with other generative models, such as : VAE [196]
where a di!usion model is applied on a latent space, GAN [245] where noise is injected to the discriminator
input, normalizing flow [278] where noise is injected in both forward and backward processes in the flow,
autoregressive model [92] where the training objective is similar to di!usion models, and EBM [69] where a
sequence of EBMs is learned by di!usion recovery likelihood.

DALLE-2 [186] employs a similar strategy by training a di!usion model on the CLIP image em-
bedding space, followed by training a separate decoder to create images based on the CLIP image
embeddings.

6 CONNECTIONS WITH OTHER GENERATIVE MODELS
In this section, we #rst introduce #ve other important classes of generative models and analyze
their advantages and limitations. Then we introduce how di!usion models are connected with
them, and illustrate how these generative models improve by incorporating di!usion models. We
provide a schematic illustration in Figure 3, and quantitative (with Frechet Inception Distance,
denoted as FID) and qualitative comparisons in Figure 4.

6.1 Variational Autoencoders and Connections with Di!usion Models
Variational Autoencoders [61, 123, 194] aim to learn both an encoder and a decoder to map input
data to values in a continuous latent space. In these models, the embedding can be interpreted as
a latent variable in a probabilistic generative model, and a probabilistic decoder can be formulated
by a parameterized likelihood function. In addition, the data x is assumed to be generated by some
unobserved latent variable z using conditional distribution pθ (x | z), and qϕ (z | x) is used to
approximately inference z. To guarantee an e!ective inference, a variational Bayes approach is
used to maximize the evidence lower bound:

L (ϕ,θ ; x) = Eq (z |x)

[
logpθ (x, z) − logqϕ (z | x)

]
(40)
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Fig. 4. "antitative and qualitative comparison between di!usion models and other generative models on
CIFAR10 dataset.

with L (ϕ,θ ; x) ≤ logpθ (x). Provided that the parameterized likelihood function pθ (x | z) and
the parameterized posterior approximation qϕ (z | x) can be computed in a point-wise way and
are di!erentiable with their parameters, the ELBO can be maximized with gradient descent. This
formulation allows $exible choice of encoder and decoder models. Typically, these models are
represented by exponential family distributions whose parameters are generated by multi-layer
neural networks.

The DDPM can be conceptualized as a hierarchical Markovian VAE with a #xed encoder. Specif-
ically, DDPM’s forward process functions as the encoder, and this process is structured as a linear
Gaussian model (as described by Equation (2)). The DDPM’s reverse process, on the other hand,
corresponds to the decoder, which is shared across multiple decoding steps. The latent variables
within the decoder are all the same size as the sample data.

In a continuous-time setting, Song et al. (2020) [228], Huang et al. (2021) [95], and Kingma et al.
(2021) [120] demonstrate that the score matching objective may be approximated by the Evidence
Lower Bound (ELBO) of a deep hierarchical VAE. Consequently, optimizing a di!usion model can
be seen as training an in#nitely deep hierarchical VAE—a #nding that supports the common belief
that Score SDE di!usion models can be interpreted as the continuous limit of hierarchical VAEs.

The Latent Score-Based Generative Model (LSGM) [238] furthers this line of research by illus-
trating that the ELBO can be considered a specialized score matching objective in the context of
latent space di!usion. Though the cross-entropy term in the ELBO is intractable, it can be trans-
formed into a tractable score matching objective by viewing the score-based generative model as
an in#nitely deep VAE.

6.2 Generative Adversarial Networks and Connections with Di!usion Models
Generative Adversarial Networks (GANs) [45, 71, 79] mainly consist of two models: a generatorG
and a discriminator D. These two models are typically constructed by neural networks but could
be implemented in any form of a di!erentiable system that maps input data from one space to
another. The optimization of GANs can be viewed as a minimax optimization problem with value
function V (G,D):

min
G

max
D
Ex∼pdata (x)[logD (x)] + Ez∼pz (z)[log(1 − D (G (z)))]. (41)

The generator G aims to generate new examples and implicitly model the data distribution. The
discriminator D is usually a binary classi#er that is used to identify generated examples from true
examples with maximally possible accuracy. The optimization process ends at a saddle point that
produces a minimum about the generator and a maximum about the discriminator. Namely, the
goal of GAN optimization is to achieve Nash equilibrium [192]. At that point, the generator can
be considered that it has captured the accurate distribution of real examples.

One of the issues of GAN is the instability in the training process, which is mainly caused
by the non-overlapping between the distribution of input data and that of the generated data.
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One solution is to inject noise into the discriminator input for widening the support of both the
generator and discriminator distributions. Taking advantage of the $exible di!usion model, Wang
et al. (2022) [245] inject noise to the discriminator with an adaptive noise schedule determined by
a di!usion model. On the other hand, GAN can facilitate sampling speed of di!usion models. Xiao
et al. (2021) [256] show that slow sampling is caused by the Gaussian assumption in the denoising
step, which is justi#ed only for small step sizes. As such, each denoising step is modeled by a
conditional GAN, allowing larger step size.

6.3 Normalizing Flows and Connections with Di!usion Models
Normalizing $ows [56, 193] are generative models that generate tractable distributions to model
high-dimensional data [57, 121]. Normalizing $ows can transform simple probability distribution
into an extremely complex probability distribution, which can be used in generative models, re-
inforcement learning, variational inference, and other #elds. Existing normalizing $ows are con-
structed based on the change of variable formula [56, 193]. The trajectory in normalizing $ows
is formulated by a di!erential equation. In the discrete-time setting, the mapping from data x
to latent z in normalizing $ows is a composition of a sequence of bijections, taking the form of
F = FN ◦ FN−1 ◦ . . . ◦ F1. The Trajectory {x1, x2, . . . xN } in normalizing $ows satis#es :

xi = Fi (xi−1,θ ), xi−1 = F−1
i (xi ,θ ) (42)

for all i ≤ N .
Similar to the continuous setting, normalizing $ows allow for the retrieval of the exact log-

likelihood through a change of variable formula. However, the bijection requirement limits the
modeling of complex data in both practical and theoretical contexts [44, 249]. Several works
attempt to relax this bijection requirement [57, 249]. For example, Di!Flow [278] introduces a
generative modeling algorithm that combines the bene#ts of both $ow-based and di!usion mod-
els. As a result, Di!Flow produces sharper boundaries than normalizing $ow and learns more
general distributions with fewer discretization steps compared to di!usion probabilistic models.

6.4 Autoregressive Models and Connections with Di!usion Models
Autoregressive Models (ARMs) work by decomposing the joint distribution of data into a prod-
uct of conditional distributions using the probability chain rule:

logp (x1:T ) =
T∑

t=1
logp (xt | x<t ) (43)

where x<t is a shorthand for x1,x2, . . . ,xt−1 [13, 127]. Recent advances in deep learning have
facilitated signi#cant progress for various data modalities [29, 161, 205], such as images [38, 239],
audio [110, 170], and text [14, 20, 75, 159, 162]. Autoregressive models (ARMs) o!er generative
capabilities through the use of a single neural network. Sampling from these models requires the
same number of network calls as the data’s dimensionality. While ARMs are e!ective density
estimators, sampling is a continuous, time-consuming process—particularly for high-dimensional
data.

The Autoregressive Di!usion Model (ARDM) [92], on the other hand, is capable of gener-
ating arbitrary-order data, including order-agnostic autoregressive models and discrete di!usion
models as special cases [6, 93, 219]. Instead of using causal masking on representations like ARMs,
the ARDM is trained with an e!ective objective that mirrors that of di!usion probabilistic models.
At the testing stage, the ARDM is able to generate data in parallel—enabling its application to a
range of arbitrary-generation tasks.
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Fig. 5. Image inpainting results produced by RePaint [146].

6.5 Energy-based Models and Connections with Di!usion Models
Energy-based Models (EBMs) [119, 129, 226] can be viewed as one generative version of discrim-
inators [101, 128, 131], while can be learned from unlabeled input data. Let x ∼ pdata (x) denote
a training example, and pθ (x) denote a probability density function that aims to approximates
pdata (x). An energy-based model is de#ned as pθ (x) = 1

Zθ
exp( fθ (x)), where Zθ =

∫
exp( fθ (x))dx

is the partition function, which is analytically intractable for high-dimensional x. For images,
fθ (x) is parameterized by a convolutional neural network with a scalar output. Salimans and Ho
(2021) [202] compare both constrained score models and energy-based models for modeling the
score of the data distribution, #nding that constrained score models, i.e., energy based models, can
perform just as well as unconstrained models when using a comparable model structure.

Although EBMs have a number of desirable properties, two challenges remain for modeling high-
dimensional data. First, learning EBMs by maximizing the likelihood requires MCMC method to
generate samples from the model, which can be very computationally expensive. Second, as demon-
strated in [168], the energy potentials learned with non-convergent MCMC are not stable, in the
sense that samples from long-run Markov chains can be signi#cantly di!erent from the observed
samples, and thus it is di"cult to evaluate the learned energy potentials. In a recent study, Gao
et al. (2020) [69] present a di!usion recovery likelihood method to tractably learn samples from a
sequence of EBMs in the reverse process of the di!usion model. Each EBM is trained with recovery
likelihood, which aims to maximize the conditional probability of the data at a certain noise level,
given their noisy versions at a higher noise level. EBMs maximize the recovery likelihood because
it is more tractable than marginal likelihood, as sampling from the conditional distributions is
much easier than sampling from the marginal distributions. This model can generate high-quality
samples, and long-run MCMC samples from the conditional distributions still resemble realistic
images.

7 APPLICATIONS OF DIFFUSION MODELS
Di!usion models have recently been employed to address a variety of challenging real-world tasks
due to their $exibility and strength. We have grouped these applications into six di!erent cate-
gories based on the task: computer vision, natural language processing, temporal data modeling,
multi-modal learning, robust learning, and interdisciplinary applications. For each category, we
provide a brief introduction to the task, followed by a detailed explanation of how di!usion mod-
els have been applied to improve performance.

7.1 Computer Vision
7.1.1 Super Resolution, Inpainting, and Translation. Generative models have been used to tackle

a variety of image restoration tasks including super-resolution, inpainting, and translation [12, 53,
65, 100, 134, 173, 187, 283]. Image super-resolution aims to restore high-resolution images from
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low-resolution inputs, while image inpainting revolves around reconstructing missing or damaged
regions in an image.

Several methods make use of di!usion models for these tasks. For example, Super-Resolution
via Repeated Re"nement (SR3) [200] uses DDPM to enable conditional image generation. SR3
conducts super-resolution through a stochastic, iterative denoising process. The Cascaded Dif-
fusion Model (CDM) [88] consists of multiple di!usion models in sequence, each generating
images of increasing resolution. Both the SR3 and CDM directly apply the di!usion process to
input images, which leads to larger evaluation steps.

In order to allow for the training of di!usion models with limited computational resources,
some methods [196, 238] have shifted the di!usion process to the latent space using pre-trained
autoencoders. The Latent Di!usion Model (LDM) [196] streamlines the training and sampling
processes for denoising di!usion models without sacri#cing quality.

For inpainting tasks, RePaint [146] features an enhanced denoising strategy that uses resam-
pling iterations to better condition the image (see Figure 5). Meanwhile, Palette [198] employs
conditional di!usion models to create a uni#ed framework for four image generation tasks: col-
orization, inpainting, uncropping, and JPEG restoration.

Image translation focuses on synthesizing images with speci#c desired styles [100]. SDEdit [160]
uses a Stochastic Di!erential Equation (SDE) prior to improve #delity. Speci#cally, it begins
by adding noise to the input image, then denoises the image through the SDE.

7.1.2 Semantic Segmentation. Semantic segmentation aims to label each image pixel according
to established object categories. Generative pre-training can enhance the label utilization of se-
mantic segmentation models, and recent work has shown that representations learned through
DDPM contain high-level semantic information that is useful for segmentation tasks [11]. The
few-shot method that leverages these learned representations has outperformed alternatives such
as VDVAE [37] and ALAE [178]. Similarly, Decoder Denoising Pretraining (DDeP) [19] in-
tegrates di!usion models with denoising autoencoders [241] and delivers promising results on
label-e"cient semantic segmentation.

7.1.3 Video Generation. Generating high-quality videos remains a challenge in the deep learn-
ing era due to the complexity and spatio-temporal continuity of video frames [267, 276]. Recent
research has turned to di!usion models to improve the quality of generated videos [90]. For exam-
ple, the Flexible Di!usion Model (FDM) [83] uses a generative model to allow for the sampling
of any arbitrary subset of video frames, given any other subset. The FDM also includes a special-
ized architecture designed for this purpose. Additionally, the Residual Video Di!usion (RVD)
model [271] utilizes an autoregressive, end-to-end optimized video di!usion model. It generates
future frames by amending a deterministic next-frame prediction, using a stochastic residual pro-
duced through an inverse di!usion process.

7.1.4 Point Cloud Completion and Generation. Point clouds are a critical form of 3D representa-
tion for capturing real-world objects. However, scans often generate incomplete point clouds due
to partial observation or self-occlusion. Recent studies have applied di!usion models to address
this challenge, using them to infer missing parts in order to reconstruct complete shapes. This
work has implications for many downstream tasks such as 3D reconstruction, augmented reality,
and scene understanding [150, 154].

Luo and Hu 2021 [149] have taken the approach of treating point clouds as particles in a ther-
modynamic system, using a heat bath to facilitate di!usion from the original distribution to a
noise distribution (see Figure 6). Meanwhile, the Point-Voxel Di!usion (PVD) model [287]
joins denoising di!usion models with the pointvoxel representation of 3D shapes. The Point

ACM Computing Surveys, Vol. 56, No. 4, Article 105. Publication date: November 2023.



Di!usion Models: A Comprehensive Survey of Methods and Applications 105:21

Fig. 6. The directed graphical model of the di!usion process for point clouds [149].

Di!usion-Re"nement (PDR) model [154] uses a conditional DDPM to generate a coarse com-
pletion from partial observations; it also establishes a point-wise mapping between the generated
point cloud and the ground truth.

7.1.5 Anomaly Detection. Anomaly detection is a critical and challenging problem in machine
learning [207, 284] and computer vision [264]. Generative models have been shown to own a
powerful mechanism for anomaly detection [8, 82, 255], modeling normal or healthy reference
data. AnoDDPM [255] utilizes DDPM to corrupt the input image and reconstruct a healthy ap-
proximation of the image. These approaches may perform better than alternatives based on adver-
sarial training as they can better model smaller datasets with e!ective sampling and stable training
schemes. DDPM-CD [8] incorporates large numbers of unsupervised remote sensing images into
the training process through DDPM. Changes of remote sensed images are detected by utilizing a
pre-trained DDPM and applying the multi-scale representations from the di!usion model decoder.

7.1.6 Distilling Data from Di!usion Models. Distilling data from generative models can e!ec-
tively advance various classi#cation tasks [9, 243]. Recent works have begun to utilize di!usion
models to achieve this goal for vision tasks [32, 84, 211]. For example, Trabucco et al. [236] adopt
di!usion models to make e!ective data augmentation for few-shot image classi#cation. He et al.
[84] use text-to-image di!usion models to synthesize data for image recognition. In addition, Shao
et al. [211] conduct di!usion-based feature augmentation for multiple instance learning in the
high-resolution wide-#eld-of-view images.

7.2 Natural Language Processing
Natural language processing aims to understand, model, and manage human languages from di!er-
ent sources such as text or audio. Text generation has become one of the most critical and challeng-
ing tasks in natural language processing [99, 136, 137]. It aims to compose plausible and readable
text in the human language given input data (e.g., a sequence and keywords) or random noise. Nu-
merous approaches based on di!usion models have been developed for text generation. Discrete
Denoising Di!usion Probabilistic Models (D3PM) [6] introduces di!usion-like generative
models for character-level text generation [31]. It generalizes the multinomial di!usion model [93]
through going beyond corruption processes with uniform transition probabilities. Large autore-
gressive language models (LMs) are able to generate high-quality text [20, 40, 184, 281]. To reli-
ably deploy these LMs in real-world applications, the text generation process is usually expected
to be controllable. It means we need to generate text that can satisfy desired requirements (e.g.,
topic, syntactic structure). Controlling the behavior of language models without re-training is a
major and important problem in text generation [49, 114]. Although recent methods have achieved
signi#cant successes on controlling simple sentence attributes (e.g., sentiment) [125, 265], there is
little progress on complex, #ne-grained controls (e.g., syntactic structure). In order to tackle more
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Fig. 7. The procedure of time series imputation with CSDI [233].

complex controls, Di!usion-LM [139] proposes a new language model based on continuous di!u-
sion. Di!usion-LM starts with a sequence of Gaussian noise vectors and incrementally denoises
them into vectors corresponding to words. The gradual denoising steps help produce hierarchical
continuous latent representations. This hierarchical and continuous latent variable can make it
possible for simple, gradient-based methods to accomplish complex control. Analog Bits [36] gen-
erates the analog bits to represent the discrete variables and further improves the sample quality
with self-conditioning and asymmetric time intervals.

7.3 Temporal Data Modeling
7.3.1 Time Series Imputation. Time series data are widely used with many important real-world

applications [64, 172, 267, 282]. Nevertheless, time series usually contain missing values for mul-
tiple reasons, caused by mechanical or arti#cial errors [215, 232, 272]. Recent years, imputation
methods have been greatly developed for both deterministic imputation [26, 30, 153] and proba-
bilistic imputation [67], including di!usion-based approaches. Conditional Score-based Di!u-
sion models for Imputation (CSDI) [233] presents a novel time series imputation method that
leverages score-based di!usion models (see Figure 7). Speci#cally, for the purpose of exploiting
correlations within temporal data, it adopts the form of self-supervised training to optimize di!u-
sion models. Its application in some real-world datasets reveals its superiority over previous meth-
ods. Controlled Stochastic Di!erential Equation (CSDE) [176] proposes a novel probabilistic
framework for modeling stochastic dynamics with a neural-controlled stochastic di!erential equa-
tion. Structured State Space Di!usion (SSSD) [1] integrates conditional di!usion models and
structured state-space models [77] to particularly capture long-term dependencies in time series.
It performs well in both time series imputation and forecasting tasks.

7.3.2 Time Series Forecasting. Time series forecasting is the task of forecasting or predicting the
future value over a period of time. Neural methods have recently become widely-used for solving
the prediction problem with univariate point forecasting methods [171] or univariate probabilis-
tic methods [203]. In the multivariate setting, we also have point forecasting methods [138] as
well as probabilistic methods, which explicitly model the data distribution using Gaussian cop-
ulas [204], GANs [274], or normalizing $ows [191]. TimeGrad [190] presents an autoregressive
model for forecasting multivariate probabilistic time series, which samples from the data distri-
bution at each time step through estimating its gradient. It utilizes di!usion probabilistic models,
which are closely connected with score matching and energy-based methods. Speci#cally, it learns
gradients by optimizing a variational bound on the data likelihood and transforms white noise into
a sample of the distribution of interest through a Markov chain using Langevin sampling [223] dur-
ing inference time.

7.3.3 Waveform Signal Processing. In electronics, acoustics, and some related #elds, the wave-
form of a signal is denoted by the shape of its graph as a function of time, independent of its time
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Fig. 8. Text-to-image result generated by GLIDE [166].

and magnitude scales. WaveGrad [33] introduces a conditional model for waveform generation
that estimates gradients of the data density. It receives a Gaussian white noise signal as input and
iteratively re#nes the signal with a gradient-based sampler. WaveGrad naturally trades inference
speed for sample quality by adjusting the number of re#nement steps, and makes a connection be-
tween non-autoregressive and autoregressive models with respect to audio quality. Di!Wave [124]
presents a versatile and e!ective di!usion probabilistic model for conditional or unconditional
waveform generation. The model is non-autoregressive and is e"ciently trained by optimizing
a variant of variational bound on the data likelihood. Moreover, it produces high-#delity audio
in di!erent waveform generation tasks, such as class-conditional generation and unconditional
generation.

7.4 Multi-Modal Learning
7.4.1 Text-to-Image Generation. Vision-language models have attracted a lot of attention re-

cently due to the number of potential applications [183]. Text-to-Image generation is the task of
generating a corresponding image from a descriptive text [62]. Blended di!usion [7] utilizes both
pre-trained DDPM [54] and CLIP [183] models, and it proposes a solution for region-based im-
age editing for general purposes, which uses natural language guidance and is applicable to real
and diverse images. Di!usionCLIP [117] carries out CLIP-guided text-driven image manipulation
based on full inversion capability and high-quality image generation power of recent di!usion
models. It #netunes the score function in the reverse di!usion process using a CLIP loss that con-
trols the attributes of the generated image based on the text prompts. On the other hand, unCLIP
(DALLE-2) [186] proposes a two-stage approach, a prior model that can generate a CLIP-based
image embedding conditioned on a text caption, and a di!usion-based decoder that can generate
an image conditioned on the image embedding. Recently, Imagen [199] proposes a text-to-image
di!usion model and a comprehensive benchmark for performance evaluation. It shows that Ima-
gen performs well against the state-of-the-art approaches including VQ-GAN+CLIP [46], Latent
Di!usion Models [145], and DALL-E 2 [186]. Models based on classi#er guidance [54] use the gra-
dients of an extra classi#er to improve the sampling quality of a di!usion model, whereas schemes
based on classi#er-free guidance [89] mix the score estimates of a conditional di!usion model and
a jointly trained unconditional di!usion model. Inspired by the ability of these guided di!usion
models [54, 89] to generate photorealistic samples and the ability of text-to-image models to han-
dle free-form prompts, GLIDE [166] applies guided di!usion to the application of text-conditioned
image synthesis as demonstrated in Figure 8. VQ-Di!usion [78] proposes a vector-quantized dif-
fusion model for text-to-image generation, and it eliminates the unidirectional bias and avoids
accumulative prediction errors.

Another interesting line of research is to leverage the pre-trained text-to-image di!usion
model for complex or #ne-grained control of synthesis results. DreamBooth [197] tackles the
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Fig. 9. ControlNet [277] controls stable di!usion with canny edges . The “automatic prompts” are generated
by models (BLIP [135]) based on the default result images.

challenging problem of subject-driven generation to contextualize subjects and modify their prop-
erties based on a few images provided by users. It learns to associate a unique identi#er with
the input-speci#c subject by combining a pre-trained semantic prior with a class-speci#c prior
preservation loss. Di!erent from those image di!usion models conditioned on text prompts, Con-
trolNet [277] adapts pre-trained large di!usion models to support additional semantic maps, like
edge maps, segmentation maps, key points, shape normals, and depth cues. ControlNet utilizes a
trainable copy of the original weights of the pre-trained di!usion model to avoid over#tting. The
trainable copy and the original frozen model are connected with a special convolution layer, where
the weights are initialized as zeros and no noise is added in the learning process. The generation
results of ControlNet are demonstrated in Figure 9.

7.4.2 Image Generation Based on Scene Graphs. Despite text-to-image generation models have
made signi#cant progress, they struggle to faithfully reproduce complex sentences with many ob-
jects and relationships. Generating images from scene graphs (SGs) is an important and challeng-
ing task for generative models [106]. Existing methods [85, 106, 140] mainly predict an image-like
layout from SGs, and then generate images based on the layout. However, such intermediate repre-
sentations would lose some semantics in SGs. On the other hand, recent di!usion models [196] are
not able to address this problem well. SGDi! [268] proposes the #rst di!usion model speci#cally
for image generation from scene graphs and learns a continuous SG embedding to condition the
latent di!usion model, which has been globally and locally semantically aligned between SGs and
images by the designed masked contrastive pre-training. SGDi! can generate images that express
complex relations in SGs better than both non-di!usion and di!usion methods. However, high-
quality paired SG-image datasets are scarce. How to leverage large-scale text-image datasets to
augment the training or provide a semantic di!usion prior to better initialization is still an open
problem.

7.4.3 Text-to-Video Generation. Recent advances in text-to-image di!usion-based generation
motivate the development of numerous text-to-video generation models [86, 216, 250]. Make-a-
Video [216] extends a di!usion-based text-to-image model to text-to-video through a spatiotem-
porally factorized di!usion model. It leverages joint text-image prior to alleviate the need for
paired text-video data and presents super-resolution strategies for high-de#nition, high-frame-rate
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text-to-video generation. Imagen Video [86] generates high-de#nition videos by designing cas-
caded video di!usion models and transferring some #ndings that perform well in the text-to-
image setting to video generation, including frozen T5 text encoder [185] and classi#er-free guid-
ance. Tune-a-Video [250] employs DDIM inversion [220] to provide structural guidance for sam-
pling and proposes e"cient attention tuning for improving temporal consistency. Most recently,
FateZero [181] proposes temporal-consistent zero-shot text-to-video editing using a pre-trained
text-to-image di!usion model. It fuses the attention maps in the DDIM inversion and generation
processes to preserve the consistency of motion and structure during editing maximally.

7.4.4 Text-to-3D Generation. 3D content generation has been in high demand for a wide range
of applications, including gaming, entertainment, and robotics simulation [141, 179]. Augment-
ing 3D content generation with natural language could considerably help with both novices and
experienced artists. DreamFusion [179] adopts a pre-trained 2D text-to-image di!usion model to
perform text-to-3D synthesis. It optimizes a randomly-initialized 3D model (a Neural Radiance
Field, or NeRF) with a probability density distillation loss, which utilizes a 2D di!usion model as
a prior for optimization of a parametric image generator. Latent-NeRF [164] brings the NeRF to
the latent space, and guides text-to-3D sampling process with an abstract geometry that de#nes
the coarse structure of the desired object. To obtain fast and high-resolution optimization of NeRF,
Magic3D [141] proposes a two-stage di!usion framework built on cascaded low-resolution image
di!usion prior and high-resolution latent di!usion prior. DATID-3D [116] is a domain adaptation
method tailored for 3D generative models using text-to-image di!usion models, which can syn-
thesize diverse images given text prompt without collecting additional information for the target
domain.

7.4.5 Text-to-Audio Generation. Text-to-audio generation is the task to transform normal lan-
guage texts to voice outputs [133, 252]. Grad-TTS [180] presents a novel text-to-speech model with
a score-based decoder and di!usion models. It gradually transforms noise predicted by the encoder
and is further aligned with text input by the method of Monotonic Alignment Search [182]. Grad-
TTS2 [118] improves Grad-TTS in an adaptive way. Di!sound [263] presents a non-autoregressive
decoder based on the discrete di!usion model [6, 218], which predicts all the mel-spectrogram to-
kens in every single step, and then re#nes the predicted tokens in the following steps. EdiTTS [231]
leverages the score-based text-to-speech model to re#ne a mel-spectrogram prior that is coarsely
modi#ed. Instead of estimating the gradient of data density, ProDi! [96] parameterizes the denois-
ing di!usion model by directly predicting the clean data.

7.5 Robust Learning
7.5.1 Data Purification. Robust learning is a class of defense methods that help models perform

robustly robust against adversarial perturbations or noises [18, 167, 178, 242, 251, 273]. While
adversarial training [156] is a standard defense method to counter adversarial attacks for image
classi#ers, adversarial puri#cation has shown signi#cant performance as an alternative defense
method [273], which puri#es attacked images into clean ones with a standalone puri#cation model.
Given an adversarial example, Di!Pure [167] di!uses it with a small amount of noise following
a forward di!usion process and then restores the clean image with a reverse generative process.
Adaptive Denoising Puri"cation (ADP) [273] demonstrates that an EBM trained with denoising
score matching [240] can e!ectively purify attacked images within just a few steps. It further
proposes an e!ective randomized puri#cation scheme, injecting random noises into images before
puri#cation. Projected Gradient Descent (PGD) [18] presents a novel stochastic di!usion-based
pre-processing robusti#cation, which aims to be a model-agnostic adversarial defense and yield a
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Fig. 10. Molecule-to-conformation di!usion process in GeoDi! [261].

high-quality denoised outcome. In addition, some approaches apply guided di!usion processes for
advanced adversarial puri#cation [242, 251].

7.5.2 Generating Synthetic Data for Robust Learning. Another use of di!usion models in robust
learning is to generate synthetic data [73, 210, 237, 244]. For example, Wang et al. [244] employ
the recent di!usion model to improve adversarial training, and the trained models achieve state-of-
the-art performance using only generated data. Sehwag et al. [209] and Um and Ye [237] enforce
the generation process of the di!usion models to focus on minority samples such that they can
generate high-#delity samples from low-density regions.

7.6 Interdisciplinary Applications
7.6.1 Molecular Graph Modeling. Graph Neural Networks [80, 254, 269, 286] and corresponding

representation learning [81] methods have made signi#cant advances [16, 234, 253, 260, 266, 289]
in numerous areas ranging from property prediction [63, 70] to molecule generation [102, 109, 151,
213]. Recently, these molecular graph neural networks have been integrated with di!usion models
to explore more intrinsic and informative properties. Torsional di!usion [104] presents a di!usion
framework that makes operations on the space of torsion angles with a di!usion process on the
hyperspace and an extrinsic-to-intrinsic scoring model. GeoDi! [261] demonstrates that Markov
chains evolving with equivariant Markov kernels can produce an invariant distribution, and fur-
ther designs blocks for the Markov kernels to preserve the desirable equivariance property (see
Figure 10). Other methods incorporate the equivariance property into 3D molecule generation [91]
and protein generation [3, 15]. Motivated by the classical force #eld methods for simulating molec-
ular dynamics, ConfGF [212] estimates the gradient #elds of log density of atomic coordinates in
conformation generation.

7.6.2 Material Design. Solid state materials are the critical foundation of numerous key tech-
nologies [22]. Crystal Di!usion Variational Autoencoder (CDVAE) [258] incorporates stabil-
ity as an inductive bias by proposing a noise conditional score network, which simultaneously
utilizes permutation, translation, rotation, and periodic invariance properties. Luo et al.
(2022) [152] model sequences and structures of complementarity-determining regions with equi-
variant di!usion, and explicitly target speci#c antigen structures to generate antibodies at atomic
resolution.

7.6.3 Medical Image Reconstruction. An inverse problem aims to recover an unknown signal
from observed measurements, and it is an important problem in medical image reconstruction of
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) [41, 42, 177, 227, 259].
Song et al. (2021) [227] utilize a score-based generative model to reconstruct an image consistent
with both the prior and the observed measurements. In [43] Chung and Ye (2022) train a continuous
time-dependent score function with denoising score matching, and iterate between the numerical
SDE solver and data consistency step for reconstruction at the evaluation stage. Recently, Peng et al.
(2022) [177] perform MR reconstruction by gradually guiding the reverse-di!usion process given
observed k-space signal, and propose a coarse-to-#ne sampling algorithm for e"cient sampling.
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8 FUTURE DIRECTIONS
Research on di!usion models is in its early stages, with much potential for improvement in both
theoretical and empirical aspects. As discussed in early sections, key research directions include
e"cient sampling and improved likelihood, as well as exploring how di!usion models can handle
special data structures, interface with other types of generative models, and be tailored to a range
of applications. In addition, we foresee that future research on di!usion models will likely expand
to the following avenues.

Revisiting Assumptions. Numerous typical assumptions in di!usion models need to be revisited
and analyzed. For example, the assumption that the forward process of di!usion models completely
erases any information in data and renders it equivalent to a prior distribution may not always
hold. In reality, complete removal of information is unachievable in #nite time. It is of great inter-
est to understand when to halt the forward noising process in order to strike a balance between
sampling e"ciency and sample quality [68]. Recent advances in Schrödinger bridges and optimal
transport [35, 50, 52, 214, 221] provide promising alternative solutions, suggesting new formula-
tions for di!usion models that are capable of converging to a speci#ed prior distribution in #nite
time.

Theoretical Understanding. Di!usion models have emerged as a powerful framework, notably as
the only one that can rival generative adversarial networks (GANs) in most applications without
resorting to adversarial training. Key to harnessing this potential is an understanding of why and
when di!usion models are e!ective over alternatives for speci#c tasks. It is important to identify
which fundamental characteristics di!erentiate di!usion models from other types of generative
models, such as variational autoencoders, energy-based models, or autoregressive models. Under-
standing these distinctions will help elucidate why di!usion models are capable of generating sam-
ples of excellent quality while achieving top likelihood. Equally important is the need to develop
theoretical guidance for selecting and determining various hyperparameters of di!usion models
systematically.

Latent Representations. Unlike variational autoencoders or generative adversarial networks, dif-
fusion models are less e!ective for providing good representations of data in their latent space.
As a result, they cannot be easily used for tasks such as manipulating data based on semantic
representations. Furthermore, since the latent space in di!usion models often possesses the same
dimensionality as the data space, sampling e"ciency is negatively a!ected and the models may
not learn the representation schemes well [103].

Pitfalls on Di"usion Models. Despite the fact that di!usion models can generate high-quality
synthetic images and can be easily controlled and scaled, recent studies have shown several pitfalls
in di!usion models that need to be addressed. For example, di!usion models would learn and even
amplify the bias in the training dataset [21, 39], generate improper images [208], and su!er from
privacy issues [27]. More e!orts need to be made to address these issues in the near future [58,
208, 230].

9 CONCLUSION
In this paper, we present a comprehensive survey on di!usion models from various perspectives.
We begin with a self-contained introduction to three fundamental formulations: DDPMs, SGMs,
and Score SDEs. Next, we discuss recent e!orts to improve di!usion models, highlighting three
major directions: sampling e"ciency, likelihood maximization, and new techniques for data with
special structures. We also explore connections between di!usion models and other generative
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models and outlined potential bene#ts of combining the two. A survey across six application do-
mains illustrates the wide-ranging potential of di!usion models. Finally, we conclude this paper
with discussions on challenging issues for future research in this #eld.
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